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tory general relativity for beginning graduate students in physi
s. Topi
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manifolds, Riemannian geometry, Einstein's equations, and three appli
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Prefa
e

These le
tures represent an introdu
tory graduate 
ourse in general relativity, both its foun-

dations and appli
ations. They are a lightly edited version of notes I handed out while

tea
hing Physi
s 8.962, the graduate 
ourse in GR at MIT, during the Spring of 1996. Al-

though they are appropriately 
alled \le
ture notes", the level of detail is fairly high, either

in
luding all ne
essary steps or leaving gaps that 
an readily be �lled in by the reader. Never-

theless, there are various ways in whi
h these notes di�er from a textbook; most importantly,

they are not organized into short se
tions that 
an be approa
hed in various orders, but are

meant to be gone through from start to �nish. A spe
ial e�ort has been made to maintain

a 
onversational tone, in an attempt to go slightly beyond the bare results themselves and

into the 
ontext in whi
h they belong.

The primary question fa
ing any introdu
tory treatment of general relativity is the level

of mathemati
al rigor at whi
h to operate. There is no uniquely proper solution, as di�erent

students will respond with di�erent levels of understanding and enthusiasm to di�erent

approa
hes. Re
ognizing this, I have tried to provide something for everyone. The le
tures

do not shy away from detailed formalism (as for example in the introdu
tion to manifolds),

but also attempt to in
lude 
on
rete examples and informal dis
ussion of the 
on
epts under


onsideration.

As these are advertised as le
ture notes rather than an original text, at times I have

shamelessly stolen from various existing books on the subje
t (espe
ially those by S
hutz,

Wald, Weinberg, and Misner, Thorne and Wheeler). My philosophy was never to try to seek

originality for its own sake; however, originality sometimes 
rept in just be
ause I thought

I 
ould be more 
lear than existing treatments. None of the substan
e of the material in

these notes is new; the only reason for reading them is if an individual reader �nds the

explanations here easier to understand than those elsewhere.

Time 
onstraints during the a
tual semester prevented me from 
overing some topi
s in

the depth whi
h they deserved, an obvious example being the treatment of 
osmology. If

the time and motivation 
ome to pass, I may expand and revise the existing notes; updated

versions will be available at http://itp.u
sb.edu/~
arroll/notes/. Of 
ourse I will

appre
iate having my attention drawn to any typographi
al or s
ienti�
 errors, as well as

suggestions for improvement of all sorts.

Numerous people have 
ontributed greatly both to my own understanding of general

relativity and to these notes in parti
ular | too many to a
knowledge with any hope of


ompleteness. Spe
ial thanks are due to Ted Pyne, who learned the subje
t along with me,

taught me a great deal, and 
ollaborated on a prede
essor to this 
ourse whi
h we taught

as a seminar in the astronomy department at Harvard. Ni
k Warner taught the graduate


ourse at MIT whi
h I took before ever tea
hing it, and his notes were (as 
omparison will

http://itp.ucsb.edu/~carroll/notes/
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reveal) an important in
uen
e on these. George Field o�ered a great deal of advi
e and

en
ouragement as I learned the subje
t and struggled to tea
h it. Tam�as Hauer struggled

along with me as the tea
hing assistant for 8.962, and was an invaluable help. All of the

students in 8.962 deserve thanks for tolerating my idiosyn
rasies and prodding me to ever

higher levels of pre
ision.

During the 
ourse of writing these notes I was supported by U.S. Dept. of Energy 
on-

tra
t no. DE-AC02-76ER03069 and National S
ien
e Foundation grants PHY/92-06867 and

PHY/94-07195.
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1 Spe
ial Relativity and Flat Spa
etime

We will begin with a whirlwind tour of spe
ial relativity (SR) and life in 
at spa
etime.

The point will be both to re
all what SR is all about, and to introdu
e tensors and related


on
epts that will be 
ru
ial later on, without the extra 
ompli
ations of 
urvature on top

of everything else. Therefore, for this se
tion we will always be working in 
at spa
etime,

and furthermore we will only use orthonormal (Cartesian-like) 
oordinates. Needless to say

it is possible to do SR in any 
oordinate system you like, but it turns out that introdu
ing

the ne
essary tools for doing so would take us halfway to 
urved spa
es anyway, so we will

put that o� for a while.

It is often said that spe
ial relativity is a theory of 4-dimensional spa
etime: three of

spa
e, one of time. But of 
ourse, the pre-SR world of Newtonian me
hani
s featured three

spatial dimensions and a time parameter. Nevertheless, there was not mu
h temptation to


onsider these as di�erent aspe
ts of a single 4-dimensional spa
etime. Why not?

space at a
fixed time

t

x, y, z

Consider a garden-variety 2-dimensional plane. It is typi
ally 
onvenient to label the

points on su
h a plane by introdu
ing 
oordinates, for example by de�ning orthogonal x and

y axes and proje
ting ea
h point onto these axes in the usual way. However, it is 
lear that

most of the interesting geometri
al fa
ts about the plane are independent of our 
hoi
e of


oordinates. As a simple example, we 
an 
onsider the distan
e between two points, given

1
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by

s

2

= (�x)

2

+ (�y)

2

: (1.1)

In a di�erent Cartesian 
oordinate system, de�ned by x

0

and y

0

axes whi
h are rotated with

respe
t to the originals, the formula for the distan
e is unaltered:

s

2

= (�x

0

)

2

+ (�y

0

)

2

: (1.2)

We therefore say that the distan
e is invariant under su
h 
hanges of 
oordinates.

∆

∆

∆

y

x’

x

y

y’

x

x’

s

y’

∆

∆

This is why it is useful to think of the plane as 2-dimensional: although we use two distin
t

numbers to label ea
h point, the numbers are not the essen
e of the geometry, sin
e we 
an

rotate axes into ea
h other while leaving distan
es and so forth un
hanged. In Newtonian

physi
s this is not the 
ase with spa
e and time; there is no useful notion of rotating spa
e

and time into ea
h other. Rather, the notion of \all of spa
e at a single moment in time"

has a meaning independent of 
oordinates.

Su
h is not the 
ase in SR. Let us 
onsider 
oordinates (t; x; y; z) on spa
etime, set up in

the following way. The spatial 
oordinates (x; y; z) 
omprise a standard Cartesian system,


onstru
ted for example by welding together rigid rods whi
h meet at right angles. The rods

must be moving freely, una

elerated. The time 
oordinate is de�ned by a set of 
lo
ks whi
h

are not moving with respe
t to the spatial 
oordinates. (Sin
e this is a thought experiment,

we imagine that the rods are in�nitely long and there is one 
lo
k at every point in spa
e.)

The 
lo
ks are syn
hronized in the following sense: if you travel from one point in spa
e to

any other in a straight line at 
onstant speed, the time di�eren
e between the 
lo
ks at the
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ends of your journey is the same as if you had made the same trip, at the same speed, in the

other dire
tion. The 
oordinate system thus 
onstru
ted is an inertial frame.

An event is de�ned as a single moment in spa
e and time, 
hara
terized uniquely by

(t; x; y; z). Then, without any motivation for the moment, let us introdu
e the spa
etime

interval between two events:

s

2

= �(
�t)

2

+ (�x)

2

+ (�y)

2

+ (�z)

2

: (1.3)

(Noti
e that it 
an be positive, negative, or zero even for two nonidenti
al points.) Here, 


is some �xed 
onversion fa
tor between spa
e and time; that is, a �xed velo
ity. Of 
ourse

it will turn out to be the speed of light; the important thing, however, is not that photons

happen to travel at that speed, but that there exists a 
 su
h that the spa
etime interval

is invariant under 
hanges of 
oordinates. In other words, if we set up a new inertial frame

(t

0

; x

0

; y

0

; z

0

) by repeating our earlier pro
edure, but allowing for an o�set in initial position,

angle, and velo
ity between the new rods and the old, the interval is un
hanged:

s

2

= �(
�t

0

)

2

+ (�x

0

)

2

+ (�y

0

)

2

+ (�z

0

)

2

: (1.4)

This is why it makes sense to think of SR as a theory of 4-dimensional spa
etime, known

as Minkowski spa
e. (This is a spe
ial 
ase of a 4-dimensional manifold, whi
h we will

deal with in detail later.) As we shall see, the 
oordinate transformations whi
h we have

impli
itly de�ned do, in a sense, rotate spa
e and time into ea
h other. There is no absolute

notion of \simultaneous events"; whether two things o

ur at the same time depends on the


oordinates used. Therefore the division of Minkowski spa
e into spa
e and time is a 
hoi
e

we make for our own purposes, not something intrinsi
 to the situation.

Almost all of the \paradoxes" asso
iated with SR result from a stubborn persisten
e of

the Newtonian notions of a unique time 
oordinate and the existen
e of \spa
e at a single

moment in time." By thinking in terms of spa
etime rather than spa
e and time together,

these paradoxes tend to disappear.

Let's introdu
e some 
onvenient notation. Coordinates on spa
etime will be denoted by

letters with Greek supers
ript indi
es running from 0 to 3, with 0 generally denoting the

time 
oordinate. Thus,

x

�

:

x

0

= 
t

x

1

= x

x

2

= y

x

3

= z

(1.5)

(Don't start thinking of the supers
ripts as exponents.) Furthermore, for the sake of sim-

pli
ity we will 
hoose units in whi
h


 = 1 ; (1.6)
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we will therefore leave out fa
tors of 
 in all subsequent formulae. Empiri
ally we know that


 is the speed of light, 3�10

8

meters per se
ond; thus, we are working in units where 1 se
ond

equals 3�10

8

meters. Sometimes it will be useful to refer to the spa
e and time 
omponents

of x

�

separately, so we will use Latin supers
ripts to stand for the spa
e 
omponents alone:

x

i

:

x

1

= x

x

2

= y

x

3

= z

(1.7)

It is also 
onvenient to write the spa
etime interval in a more 
ompa
t form. We therefore

introdu
e a 4 � 4 matrix, the metri
, whi
h we write using two lower indi
es:

�

��

=

0

B

B

B

�

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

C

C

C

A

: (1.8)

(Some referen
es, espe
ially �eld theory books, de�ne the metri
 with the opposite sign, so

be 
areful.) We then have the ni
e formula

s

2

= �

��

�x

�

�x

�

: (1.9)

Noti
e that we use the summation 
onvention, in whi
h indi
es whi
h appear both as

supers
ripts and subs
ripts are summed over. The 
ontent of (1.9) is therefore just the same

as (1.3).

Now we 
an 
onsider 
oordinate transformations in spa
etime at a somewhat more ab-

stra
t level than before. What kind of transformations leave the interval (1.9) invariant?

One simple variety are the translations, whi
h merely shift the 
oordinates:

x

�

! x

�

0

= x

�

+ a

�

; (1.10)

where a

�

is a set of four �xed numbers. (Noti
e that we put the prime on the index, not on

the x.) Translations leave the di�eren
es �x

�

un
hanged, so it is not remarkable that the

interval is un
hanged. The only other kind of linear transformation is to multiply x

�

by a

(spa
etime-independent) matrix:

x

�

0

= �

�

0

�

x

�

; (1.11)

or, in more 
onventional matrix notation,

x

0

= �x : (1.12)

These transformations do not leave the di�eren
es �x

�

un
hanged, but multiply them also

by the matrix �. What kind of matri
es will leave the interval invariant? Sti
king with the

matrix notation, what we would like is

s

2

= (�x)

T

�(�x) = (�x

0

)

T

�(�x

0

)

= (�x)

T

�

T

��(�x) ; (1.13)
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and therefore

� = �

T

�� ; (1.14)

or

�

��

= �

�

0

�

�

�

0

�

�

�

0

�

0

: (1.15)

We want to �nd the matri
es �

�

0

�

su
h that the 
omponents of the matrix �

�

0

�

0

are the

same as those of �

��

; that is what it means for the interval to be invariant under these

transformations.

The matri
es whi
h satisfy (1.14) are known as the Lorentz transformations; the set

of them forms a group under matrix multipli
ation, known as the Lorentz group. There is

a 
lose analogy between this group and O(3), the rotation group in three-dimensional spa
e.

The rotation group 
an be thought of as 3� 3 matri
es R whi
h satisfy

1 = R

T

1R ; (1.16)

where 1 is the 3 � 3 identity matrix. The similarity with (1.14) should be 
lear; the only

di�eren
e is the minus sign in the �rst term of the metri
 �, signifying the timelike dire
tion.

The Lorentz group is therefore often referred to as O(3,1). (The 3 � 3 identity matrix is

simply the metri
 for ordinary 
at spa
e. Su
h a metri
, in whi
h all of the eigenvalues are

positive, is 
alled Eu
lidean, while those su
h as (1.8) whi
h feature a single minus sign are


alled Lorentzian.)

Lorentz transformations fall into a number of 
ategories. First there are the 
onventional

rotations, su
h as a rotation in the x-y plane:

�

�

0

�

=

0

B

B

B

�

1 0 0 0

0 
os � sin � 0

0 � sin � 
os � 0

0 0 0 1

1

C

C

C

A

: (1.17)

The rotation angle � is a periodi
 variable with period 2�. There are also boosts, whi
h

may be thought of as \rotations between spa
e and time dire
tions." An example is given

by

�

�

0

�

=

0

B

B

B

�


osh� � sinh� 0 0

� sinh� 
osh� 0 0

0 0 1 0

0 0 0 1

1

C

C

C

A

: (1.18)

The boost parameter �, unlike the rotation angle, is de�ned from �1 to 1. There are

also dis
rete transformations whi
h reverse the time dire
tion or one or more of the spa-

tial dire
tions. (When these are ex
luded we have the proper Lorentz group, SO(3,1).) A

general transformation 
an be obtained by multiplying the individual transformations; the
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expli
it expression for this six-parameter matrix (three boosts, three rotations) is not suÆ-


iently pretty or useful to bother writing down. In general Lorentz transformations will not


ommute, so the Lorentz group is non-abelian. The set of both translations and Lorentz

transformations is a ten-parameter non-abelian group, the Poin
ar�e group.

You should not be surprised to learn that the boosts 
orrespond to 
hanging 
oordinates

by moving to a frame whi
h travels at a 
onstant velo
ity, but let's see it more expli
itly.

For the transformation given by (1.18), the transformed 
oordinates t

0

and x

0

will be given

by

t

0

= t 
osh �� x sinh �

x

0

= �t sinh�+ x 
osh � : (1.19)

From this we see that the point de�ned by x

0

= 0 is moving; it has a velo
ity

v =

x

t

=

sinh�


osh �

= tanh � : (1.20)

To translate into more pedestrian notation, we 
an repla
e � = tanh

�1

v to obtain

t

0

= 
(t� vx)

x

0

= 
(x� vt) (1.21)

where 
 = 1=

p

1� v

2

. So indeed, our abstra
t approa
h has re
overed the 
onventional

expressions for Lorentz transformations. Applying these formulae leads to time dilation,

length 
ontra
tion, and so forth.

An extremely useful tool is the spa
etime diagram, so let's 
onsider Minkowski spa
e

from this point of view. We 
an begin by portraying the initial t and x axes at (what are


onventionally thought of as) right angles, and suppressing the y and z axes. Then a

ording

to (1.19), under a boost in the x-t plane the x

0

axis (t

0

= 0) is given by t = x tanh �, while

the t

0

axis (x

0

= 0) is given by t = x= tanh �. We therefore see that the spa
e and time axes

are rotated into ea
h other, although they s
issor together instead of remaining orthogonal

in the traditional Eu
lidean sense. (As we shall see, the axes do in fa
t remain orthogonal

in the Lorentzian sense.) This should 
ome as no surprise, sin
e if spa
etime behaved just

like a four-dimensional version of spa
e the world would be a very di�erent pla
e.

It is also enlightening to 
onsider the paths 
orresponding to travel at the speed 
 = 1.

These are given in the original 
oordinate system by x = �t. In the new system, a moment's

thought reveals that the paths de�ned by x

0

= �t

0

are pre
isely the same as those de�ned

by x = �t; these traje
tories are left invariant under Lorentz transformations. Of 
ourse

we know that light travels at this speed; we have therefore found that the speed of light is

the same in any inertial frame. A set of points whi
h are all 
onne
ted to a single event by
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x’

x

t
t’

 x = -t
x’ = -t’

 x = t
x’ = t’

straight lines moving at the speed of light is 
alled a light 
one; this entire set is invariant

under Lorentz transformations. Light 
ones are naturally divided into future and past; the

set of all points inside the future and past light 
ones of a point p are 
alled timelike

separated from p, while those outside the light 
ones are spa
elike separated and those

on the 
ones are lightlike or null separated from p. Referring ba
k to (1.3), we see that the

interval between timelike separated points is negative, between spa
elike separated points is

positive, and between null separated points is zero. (The interval is de�ned to be s

2

, not the

square root of this quantity.) Noti
e the distin
tion between this situation and that in the

Newtonian world; here, it is impossible to say (in a 
oordinate-independent way) whether a

point that is spa
elike separated from p is in the future of p, the past of p, or \at the same

time".

To probe the stru
ture of Minkowski spa
e in more detail, it is ne
essary to introdu
e

the 
on
epts of ve
tors and tensors. We will start with ve
tors, whi
h should be familiar. Of


ourse, in spa
etime ve
tors are four-dimensional, and are often referred to as four-ve
tors.

This turns out to make quite a bit of di�eren
e; for example, there is no su
h thing as a


ross produ
t between two four-ve
tors.

Beyond the simple fa
t of dimensionality, the most important thing to emphasize is that

ea
h ve
tor is lo
ated at a given point in spa
etime. You may be used to thinking of ve
tors

as stret
hing from one point to another in spa
e, and even of \free" ve
tors whi
h you 
an

slide 
arelessly from point to point. These are not useful 
on
epts in relativity. Rather, to

ea
h point p in spa
etime we asso
iate the set of all possible ve
tors lo
ated at that point;

this set is known as the tangent spa
e at p, or T

p

. The name is inspired by thinking of the

set of ve
tors atta
hed to a point on a simple 
urved two-dimensional spa
e as 
omprising a
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plane whi
h is tangent to the point. But inspiration aside, it is important to think of these

ve
tors as being lo
ated at a single point, rather than stret
hing from one point to another.

(Although this won't stop us from drawing them as arrows on spa
etime diagrams.)

p

manifold 

    M

Tp

Later we will relate the tangent spa
e at ea
h point to things we 
an 
onstru
t from the

spa
etime itself. For right now, just think of T

p

as an abstra
t ve
tor spa
e for ea
h point

in spa
etime. A (real) ve
tor spa
e is a 
olle
tion of obje
ts (\ve
tors") whi
h, roughly

speaking, 
an be added together and multiplied by real numbers in a linear way. Thus, for

any two ve
tors V and W and real numbers a and b, we have

(a+ b)(V +W ) = aV + bV + aW + bW : (1.22)

Every ve
tor spa
e has an origin, i.e. a zero ve
tor whi
h fun
tions as an identity element

under ve
tor addition. In many ve
tor spa
es there are additional operations su
h as taking

an inner (dot) produ
t, but this is extra stru
ture over and above the elementary 
on
ept of

a ve
tor spa
e.

A ve
tor is a perfe
tly well-de�ned geometri
 obje
t, as is a ve
tor �eld, de�ned as a

set of ve
tors with exa
tly one at ea
h point in spa
etime. (The set of all the tangent spa
es

of a manifold M is 
alled the tangent bundle, T (M).) Nevertheless it is often useful for


on
rete purposes to de
ompose ve
tors into 
omponents with respe
t to some set of basis

ve
tors. A basis is any set of ve
tors whi
h both spans the ve
tor spa
e (any ve
tor is

a linear 
ombination of basis ve
tors) and is linearly independent (no ve
tor in the basis

is a linear 
ombination of other basis ve
tors). For any given ve
tor spa
e, there will be

an in�nite number of legitimate bases, but ea
h basis will 
onsist of the same number of
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ve
tors, known as the dimension of the spa
e. (For a tangent spa
e asso
iated with a point

in Minkowski spa
e, the dimension is of 
ourse four.)

Let us imagine that at ea
h tangent spa
e we set up a basis of four ve
tors ê

(�)

, with

� 2 f0; 1; 2; 3g as usual. In fa
t let us say that ea
h basis is adapted to the 
oordinates x

�

;

that is, the basis ve
tor ê

(1)

is what we would normally think of pointing along the x-axis,

et
. It is by no means ne
essary that we 
hoose a basis whi
h is adapted to any 
oordinate

system at all, although it is often 
onvenient. (We really 
ould be more pre
ise here, but

later on we will repeat the dis
ussion at an ex
ru
iating level of pre
ision, so some sloppiness

now is forgivable.) Then any abstra
t ve
tor A 
an be written as a linear 
ombination of

basis ve
tors:

A = A

�

ê

(�)

: (1.23)

The 
oeÆ
ients A

�

are the 
omponents of the ve
tor A. More often than not we will forget

the basis entirely and refer somewhat loosely to \the ve
tor A

�

", but keep in mind that

this is shorthand. The real ve
tor is an abstra
t geometri
al entity, while the 
omponents

are just the 
oeÆ
ients of the basis ve
tors in some 
onvenient basis. (Sin
e we will usually

suppress the expli
it basis ve
tors, the indi
es will usually label 
omponents of ve
tors and

tensors. This is why there are parentheses around the indi
es on the basis ve
tors, to remind

us that this is a 
olle
tion of ve
tors, not 
omponents of a single ve
tor.)

A standard example of a ve
tor in spa
etime is the tangent ve
tor to a 
urve. A param-

eterized 
urve or path through spa
etime is spe
i�ed by the 
oordinates as a fun
tion of the

parameter, e.g. x

�

(�). The tangent ve
tor V (�) has 
omponents

V

�

=

dx

�

d�

: (1.24)

The entire ve
tor is thus V = V

�

ê

(�)

. Under a Lorentz transformation the 
oordinates

x

�


hange a

ording to (1.11), while the parameterization � is unaltered; we 
an therefore

dedu
e that the 
omponents of the tangent ve
tor must 
hange as

V

�

! V

�

0

= �

�

0

�

V

�

: (1.25)

However, the ve
tor itself (as opposed to its 
omponents in some 
oordinate system) is

invariant under Lorentz transformations. We 
an use this fa
t to derive the transformation

properties of the basis ve
tors. Let us refer to the set of basis ve
tors in the transformed


oordinate system as ê

(�

0

)

. Sin
e the ve
tor is invariant, we have

V = V

�

ê

(�)

= V

�

0

ê

(�

0

)

= �

�

0

�

V

�

ê

(�

0

)

: (1.26)

But this relation must hold no matter what the numeri
al values of the 
omponents V

�

are.

Therefore we 
an say

ê

(�)

= �

�

0

�

ê

(�

0

)

: (1.27)



1 SPECIAL RELATIVITY AND FLAT SPACETIME 10

To get the new basis ê

(�

0

)

in terms of the old one ê

(�)

we should multiply by the inverse

of the Lorentz transformation �

�

0

�

. But the inverse of a Lorentz transformation from the

unprimed to the primed 
oordinates is also a Lorentz transformation, this time from the

primed to the unprimed systems. We will therefore introdu
e a somewhat subtle notation,

by writing using the same symbol for both matri
es, just with primed and unprimed indi
es

adjusted. That is,

(�

�1

)

�

0

�

= �

�

0

�

; (1.28)

or

�

�

0

�

�

�

0

�

= Æ

�

0

�

0

; �

�

0

�

�

�

0

�

= Æ

�

�

; (1.29)

where Æ

�

�

is the traditional Krone
ker delta symbol in four dimensions. (Note that S
hutz uses

a di�erent 
onvention, always arranging the two indi
es northwest/southeast; the important

thing is where the primes go.) From (1.27) we then obtain the transformation rule for basis

ve
tors:

ê

(�

0

)

= �

�

0

�

ê

(�)

: (1.30)

Therefore the set of basis ve
tors transforms via the inverse Lorentz transformation of the


oordinates or ve
tor 
omponents.

It is worth pausing a moment to take all this in. We introdu
ed 
oordinates labeled by

upper indi
es, whi
h transformed in a 
ertain way under Lorentz transformations. We then


onsidered ve
tor 
omponents whi
h also were written with upper indi
es, whi
h made sense

sin
e they transformed in the same way as the 
oordinate fun
tions. (In a �xed 
oordinate

system, ea
h of the four 
oordinates x

�


an be thought of as a fun
tion on spa
etime, as


an ea
h of the four 
omponents of a ve
tor �eld.) The basis ve
tors asso
iated with the


oordinate system transformed via the inverse matrix, and were labeled by a lower index.

This notation ensured that the invariant obje
t 
onstru
ted by summing over the 
omponents

and basis ve
tors was left un
hanged by the transformation, just as we would wish. It's

probably not giving too mu
h away to say that this will 
ontinue to be the 
ase for more


ompli
ated obje
ts with multiple indi
es (tensors).

On
e we have set up a ve
tor spa
e, there is an asso
iated ve
tor spa
e (of equal dimen-

sion) whi
h we 
an immediately de�ne, known as the dual ve
tor spa
e. The dual spa
e

is usually denoted by an asterisk, so that the dual spa
e to the tangent spa
e T

p

is 
alled

the 
otangent spa
e and denoted T

�

p

. The dual spa
e is the spa
e of all linear maps from

the original ve
tor spa
e to the real numbers; in math lingo, if ! 2 T

�

p

is a dual ve
tor, then

it a
ts as a map su
h that:

!(aV + bW ) = a!(V ) + b!(W ) 2 R ; (1.31)

where V , W are ve
tors and a, b are real numbers. The ni
e thing about these maps is that

they form a ve
tor spa
e themselves; thus, if ! and � are dual ve
tors, we have

(a! + b�)(V ) = a!(V ) + b�(V ) : (1.32)
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To make this 
onstru
tion somewhat more 
on
rete, we 
an introdu
e a set of basis dual

ve
tors

^

�

(�)

by demanding

^

�

(�)

(ê

(�)

) = Æ

�

�

: (1.33)

Then every dual ve
tor 
an be written in terms of its 
omponents, whi
h we label with lower

indi
es:

! = !

�

^

�

(�)

: (1.34)

In perfe
t analogy with ve
tors, we will usually simply write !

�

to stand for the entire dual

ve
tor. In fa
t, you will sometime see elements of T

p

(what we have 
alled ve
tors) referred to

as 
ontravariant ve
tors, and elements of T

�

p

(what we have 
alled dual ve
tors) referred

to as 
ovariant ve
tors. A
tually, if you just refer to ordinary ve
tors as ve
tors with upper

indi
es and dual ve
tors as ve
tors with lower indi
es, nobody should be o�ended. Another

name for dual ve
tors is one-forms, a somewhat mysterious designation whi
h will be
ome


learer soon.

The 
omponent notation leads to a simple way of writing the a
tion of a dual ve
tor on

a ve
tor:

!(V ) = !

�

V

�

^

�

(�)

(ê

(�)

)

= !

�

V

�

Æ

�

�

= !

�

V

�

2 R : (1.35)

This is why it is rarely ne
essary to write the basis ve
tors (and dual ve
tors) expli
itly; the


omponents do all of the work. The form of (1.35) also suggests that we 
an think of ve
tors

as linear maps on dual ve
tors, by de�ning

V (!) � !(V ) = !

�

V

�

: (1.36)

Therefore, the dual spa
e to the dual ve
tor spa
e is the original ve
tor spa
e itself.

Of 
ourse in spa
etime we will be interested not in a single ve
tor spa
e, but in �elds of

ve
tors and dual ve
tors. (The set of all 
otangent spa
es overM is the 
otangent bundle,

T

�

(M).) In that 
ase the a
tion of a dual ve
tor �eld on a ve
tor �eld is not a single number,

but a s
alar (or just \fun
tion") on spa
etime. A s
alar is a quantity without indi
es, whi
h

is un
hanged under Lorentz transformations.

We 
an use the same arguments that we earlier used for ve
tors to derive the transfor-

mation properties of dual ve
tors. The answers are, for the 
omponents,

!

�

0

= �

�

0

�

!

�

; (1.37)

and for basis dual ve
tors,

^

�

(�

0

)

= �

�

0

�

^

�

(�)

: (1.38)
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This is just what we would expe
t from index pla
ement; the 
omponents of a dual ve
tor

transform under the inverse transformation of those of a ve
tor. Note that this ensures that

the s
alar (1.35) is invariant under Lorentz transformations, just as it should be.

Let's 
onsider some examples of dual ve
tors, �rst in other 
ontexts and then inMinkowski

spa
e. Imagine the spa
e of n-
omponent 
olumn ve
tors, for some integer n. Then the dual

spa
e is that of n-
omponent row ve
tors, and the a
tion is ordinary matrix multipli
ation:

V =

0

B

B

B

B

B

B

B

B

�

V

1

V

2

�

�

�

V

n

1

C

C

C

C

C

C

C

C

A

; ! = (!

1

!

2

� � � !

n

) ;

!(V ) = (!

1

!

2

� � � !

n

)

0

B

B

B

B

B

B

B

B

�

V

1

V

2

�

�

�

V

n

1

C

C

C

C

C

C

C

C

A

= !

i

V

i

: (1.39)

Another familiar example o

urs in quantum me
hani
s, where ve
tors in the Hilbert spa
e

are represented by kets, j i. In this 
ase the dual spa
e is the spa
e of bras, h�j, and the

a
tion gives the number h�j i. (This is a 
omplex number in quantum me
hani
s, but the

idea is pre
isely the same.)

In spa
etime the simplest example of a dual ve
tor is the gradient of a s
alar fun
tion,

the set of partial derivatives with respe
t to the spa
etime 
oordinates, whi
h we denote by

\d":

d� =

��

�x

�

^

�

(�)

: (1.40)

The 
onventional 
hain rule used to transform partial derivatives amounts in this 
ase to the

transformation rule of 
omponents of dual ve
tors:

��

�x

�

0

=

�x

�

�x

�

0

��

�x

�

= �

�

0

�

��

�x

�

; (1.41)

where we have used (1.11) and (1.28) to relate the Lorentz transformation to the 
oordinates.

The fa
t that the gradient is a dual ve
tor leads to the following shorthand notations for

partial derivatives:

��

�x

�

= �

�

� = �;

�

: (1.42)
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(Very roughly speaking, \x

�

has an upper index, but when it is in the denominator of a

derivative it implies a lower index on the resulting obje
t.") I'm not a big fan of the 
omma

notation, but we will use �

�

all the time. Note that the gradient does in fa
t a
t in a natural

way on the example we gave above of a ve
tor, the tangent ve
tor to a 
urve. The result is

ordinary derivative of the fun
tion along the 
urve:

�

�

�

�x

�

��

=

d�

d�

: (1.43)

As a �nal note on dual ve
tors, there is a way to represent them as pi
tures whi
h is


onsistent with the pi
ture of ve
tors as arrows. See the dis
ussion in S
hutz, or in MTW

(where it is taken to dizzying extremes).

A straightforward generalization of ve
tors and dual ve
tors is the notion of a tensor.

Just as a dual ve
tor is a linear map from ve
tors to R, a tensor T of type (or rank) (k; l)

is a multilinear map from a 
olle
tion of dual ve
tors and ve
tors to R:

T : T

�

p

� � � � � T

�

p

� T

p

� � � � � T

p

! R

(k times) (l times) (1.44)

Here, \�" denotes the Cartesian produ
t, so that for example T

p

�T

p

is the spa
e of ordered

pairs of ve
tors. Multilinearity means that the tensor a
ts linearly in ea
h of its arguments;

for instan
e, for a tensor of type (1; 1), we have

T (a! + b�; 
V + dW ) = a
T (!; V ) + adT (!;W ) + b
T (�; V ) + bdT (�;W ) : (1.45)

From this point of view, a s
alar is a type (0; 0) tensor, a ve
tor is a type (1; 0) tensor, and

a dual ve
tor is a type (0; 1) tensor.

The spa
e of all tensors of a �xed type (k; l) forms a ve
tor spa
e; they 
an be added

together and multiplied by real numbers. To 
onstru
t a basis for this spa
e, we need to

de�ne a new operation known as the tensor produ
t, denoted by 
. If T is a (k; l) tensor

and S is a (m;n) tensor, we de�ne a (k +m; l+ n) tensor T 
 S by

T 
 S(!

(1)

; : : : ; !

(k)

; : : : ; !

(k+m)

; V

(1)

; : : : ; V

(l)

; : : : ; V

(l+n)

)

= T (!

(1)

; : : : ; !

(k)

; V

(1)

; : : : ; V

(l)

)S(!

(k+1)

; : : : ; !

(k+m)

; V

(l+1)

; : : : ; V

(l+n)

) : (1.46)

(Note that the !

(i)

and V

(i)

are distin
t dual ve
tors and ve
tors, not 
omponents thereof.)

In other words, �rst a
t T on the appropriate set of dual ve
tors and ve
tors, and then a
t

S on the remainder, and then multiply the answers. Note that, in general, T 
 S 6= S 
 T .

It is now straightforward to 
onstru
t a basis for the spa
e of all (k; l) tensors, by taking

tensor produ
ts of basis ve
tors and dual ve
tors; this basis will 
onsist of all tensors of the

form

ê

(�

1

)


 � � � 
 ê

(�

k

)




^

�

(�

1

)


 � � � 


^

�

(�

l

)

: (1.47)
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In a 4-dimensional spa
etime there will be 4

k+l

basis tensors in all. In 
omponent notation

we then write our arbitrary tensor as

T = T

�

1

����

k

�

1

����

l

ê

(�

1

)


 � � � 
 ê

(�

k

)




^

�

(�

1

)


 � � � 


^

�

(�

l

)

: (1.48)

Alternatively, we 
ould de�ne the 
omponents by a
ting the tensor on basis ve
tors and dual

ve
tors:

T

�

1

����

k

�

1

����

l

= T (

^

�

(�

1

)

; : : : ;

^

�

(�

k

)

; ê

(�

1

)

; : : : ; ê

(�

l

)

) : (1.49)

You 
an 
he
k for yourself, using (1.33) and so forth, that these equations all hang together

properly.

As with ve
tors, we will usually take the short
ut of denoting the tensor T by its 
om-

ponents T

�

1

����

k

�

1

����

l

. The a
tion of the tensors on a set of ve
tors and dual ve
tors follows

the pattern established in (1.35):

T (!

(1)

; : : : ; !

(k)

; V

(1)

; : : : ; V

(l)

) = T

�

1

����

k

�

1

����

l

!

(1)

�

1

� � �!

(k)

�

k

V

(1)�

1

� � �V

(l)�

l

: (1.50)

The order of the indi
es is obviously important, sin
e the tensor need not a
t in the same way

on its various arguments. Finally, the transformation of tensor 
omponents under Lorentz

transformations 
an be derived by applying what we already know about the transformation

of basis ve
tors and dual ve
tors. The answer is just what you would expe
t from index

pla
ement,

T

�

0

1

����

0

k

�

0

1

����

0

l

= �

�

0

1

�

1

� � ��

�

0

k

�

k

�

�

0

1

�

1

� � ��

�

0

l

�

l

T

�

1

����

k

�

1

����

l

: (1.51)

Thus, ea
h upper index gets transformed like a ve
tor, and ea
h lower index gets transformed

like a dual ve
tor.

Although we have de�ned tensors as linear maps from sets of ve
tors and tangent ve
tors

to R, there is nothing that for
es us to a
t on a full 
olle
tion of arguments. Thus, a (1; 1)

tensor also a
ts as a map from ve
tors to ve
tors:

T

�

�

: V

�

! T

�

�

V

�

: (1.52)

You 
an 
he
k for yourself that T

�

�

V

�

is a ve
tor (i.e. obeys the ve
tor transformation law).

Similarly, we 
an a
t one tensor on (all or part of) another tensor to obtain a third tensor.

For example,

U

�

�

= T

��

�

S

�

��

(1.53)

is a perfe
tly good (1; 1) tensor.

You may be 
on
erned that this introdu
tion to tensors has been somewhat too brief,

given the esoteri
 nature of the material. In fa
t, the notion of tensors does not require a

great deal of e�ort to master; it's just a matter of keeping the indi
es straight, and the rules

for manipulating them are very natural. Indeed, a number of books like to de�ne tensors as
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olle
tions of numbers transforming a

ording to (1.51). While this is operationally useful, it

tends to obs
ure the deeper meaning of tensors as geometri
al entities with a life independent

of any 
hosen 
oordinate system. There is, however, one subtlety whi
h we have glossed over.

The notions of dual ve
tors and tensors and bases and linear maps belong to the realm of

linear algebra, and are appropriate whenever we have an abstra
t ve
tor spa
e at hand. In

the 
ase of interest to us we have not just a ve
tor spa
e, but a ve
tor spa
e at ea
h point in

spa
etime. More often than not we are interested in tensor �elds, whi
h 
an be thought of

as tensor-valued fun
tions on spa
etime. Fortunately, none of the manipulations we de�ned

above really 
are whether we are dealing with a single ve
tor spa
e or a 
olle
tion of ve
tor

spa
es, one for ea
h event. We will be able to get away with simply 
alling things fun
tions

of x

�

when appropriate. However, you should keep straight the logi
al independen
e of the

notions we have introdu
ed and their spe
i�
 appli
ation to spa
etime and relativity.

Now let's turn to some examples of tensors. First we 
onsider the previous example of


olumn ve
tors and their duals, row ve
tors. In this system a (1; 1) tensor is simply a matrix,

M

i

j

. Its a
tion on a pair (!; V ) is given by usual matrix multipli
ation:

M(!; V ) = (!

1

!

2

� � � !

n

)

0

B

B

B

B

B

B

B

B

�

M

1

1

M

1

2

� � � M

1

n

M

2

1

M

2

2

� � � M

2

n

� � � � � �

� � � � � �

� � � � � �

M

n

1

M

n

2

� � � M

n

n

1

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

�

V

1

V

2

�

�

�

V

n

1

C

C

C

C

C

C

C

C

A

= !

i

M

i

j

V

j

: (1.54)

If you like, feel free to think of tensors as \matri
es with an arbitrary number of indi
es."

In spa
etime, we have already seen some examples of tensors without 
alling them that.

The most familiar example of a (0; 2) tensor is the metri
, �

��

. The a
tion of the metri
 on

two ve
tors is so useful that it gets its own name, the inner produ
t (or dot produ
t):

�(V;W ) = �

��

V

�

W

�

= V �W : (1.55)

Just as with the 
onventional Eu
lidean dot produ
t, we will refer to two ve
tors whose dot

produ
t vanishes as orthogonal. Sin
e the dot produ
t is a s
alar, it is left invariant under

Lorentz transformations; therefore the basis ve
tors of any Cartesian inertial frame, whi
h

are 
hosen to be orthogonal by de�nition, are still orthogonal after a Lorentz transformation

(despite the \s
issoring together" we noti
ed earlier). The norm of a ve
tor is de�ned to be

inner produ
t of the ve
tor with itself; unlike in Eu
lidean spa
e, this number is not positive

de�nite:

if �

��

V

�

V

�

is

8

>

<

>

:

< 0 ; V

�

is timelike

= 0 ; V

�

is lightlike or null

> 0 ; V

�

is spa
elike :
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(A ve
tor 
an have zero norm without being the zero ve
tor.) You will noti
e that the

terminology is the same as that whi
h we earlier used to 
lassify the relationship between

two points in spa
etime; it's no a

ident, of 
ourse, and we will go into more detail later.

Another tensor is the Krone
ker delta Æ

�

�

, of type (1; 1), whi
h you already know the


omponents of. Related to this and the metri
 is the inverse metri
 �

��

, a type (2; 0)

tensor de�ned as the inverse of the metri
:

�

��

�

��

= �

��

�

��

= Æ

�

�

: (1.56)

In fa
t, as you 
an 
he
k, the inverse metri
 has exa
tly the same 
omponents as the metri


itself. (This is only true in 
at spa
e in Cartesian 
oordinates, and will fail to hold in more

general situations.) There is also the Levi-Civita tensor, a (0; 4) tensor:

�

����

=

8

>

<

>

:

+1 if ���� is an even permutation of 0123

�1 if ���� is an odd permutation of 0123

0 otherwise :

(1.57)

Here, a \permutation of 0123" is an ordering of the numbers 0, 1, 2, 3 whi
h 
an be obtained

by starting with 0123 and ex
hanging two of the digits; an even permutation is obtained by

an even number of su
h ex
hanges, and an odd permutation is obtained by an odd number.

Thus, for example, �

0321

= �1.

It is a remarkable property of the above tensors { the metri
, the inverse metri
, the

Krone
ker delta, and the Levi-Civita tensor { that, even though they all transform a

ording

to the tensor transformation law (1.51), their 
omponents remain un
hanged in any Cartesian


oordinate system in 
at spa
etime. In some sense this makes them bad examples of tensors,

sin
e most tensors do not have this property. In fa
t, even these tensors do not have this

property on
e we go to more general 
oordinate systems, with the single ex
eption of the

Krone
ker delta. This tensor has exa
tly the same 
omponents in any 
oordinate system

in any spa
etime. This makes sense from the de�nition of a tensor as a linear map; the

Krone
ker tensor 
an be thought of as the identity map from ve
tors to ve
tors (or from

dual ve
tors to dual ve
tors), whi
h 
learly must have the same 
omponents regardless of


oordinate system. The other tensors (the metri
, its inverse, and the Levi-Civita tensor)


hara
terize the stru
ture of spa
etime, and all depend on the metri
. We shall therefore

have to treat them more 
arefully when we drop our assumption of 
at spa
etime.

A more typi
al example of a tensor is the ele
tromagneti
 �eld strength tensor. We

all know that the ele
tromagneti
 �elds are made up of the ele
tri
 �eld ve
tor E

i

and the

magneti
 �eld ve
tor B

i

. (Remember that we use Latin indi
es for spa
elike 
omponents

1,2,3.) A
tually these are only \ve
tors" under rotations in spa
e, not under the full Lorentz
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group. In fa
t they are 
omponents of a (0; 2) tensor F

��

, de�ned by

F

��

=

0

B

B

B

�

0 �E

1

�E

2

�E

3

E

1

0 B

3

�B

2

E

2

�B

3

0 B

1

E

3

B

2

�B

1

0

1

C

C

C

A

= �F

��

: (1.58)

From this point of view it is easy to transform the ele
tromagneti
 �elds in one referen
e

frame to those in another, by appli
ation of (1.51). The unifying power of the tensor formal-

ism is evident: rather than a 
olle
tion of two ve
tors whose relationship and transformation

properties are rather mysterious, we have a single tensor �eld to des
ribe all of ele
tromag-

netism. (On the other hand, don't get 
arried away; sometimes it's more 
onvenient to work

in a single 
oordinate system using the ele
tri
 and magneti
 �eld ve
tors.)

With some examples in hand we 
an now be a little more systemati
 about some prop-

erties of tensors. First 
onsider the operation of 
ontra
tion, whi
h turns a (k; l) tensor

into a (k� 1; l� 1) tensor. Contra
tion pro
eeds by summing over one upper and one lower

index:

S

��

�

= T

���

��

: (1.59)

You 
an 
he
k that the result is a well-de�ned tensor. Of 
ourse it is only permissible to


ontra
t an upper index with a lower index (as opposed to two indi
es of the same type).

Note also that the order of the indi
es matters, so that you 
an get di�erent tensors by


ontra
ting in di�erent ways; thus,

T

���

��

6= T

���

��

(1.60)

in general.

The metri
 and inverse metri
 
an be used to raise and lower indi
es on tensors. That

is, given a tensor T

��


Æ

, we 
an use the metri
 to de�ne new tensors whi
h we 
hoose to

denote by the same letter T :

T

���

Æ

= �

�


T

��


Æ

;

T

�

�


Æ

= �

��

T

��


Æ

;

T

��

��

= �

��

�

��

�

�


�

�Æ

T

��


Æ

; (1.61)

and so forth. Noti
e that raising and lowering does not 
hange the position of an index

relative to other indi
es, and also that \free" indi
es (whi
h are not summed over) must be

the same on both sides of an equation, while \dummy" indi
es (whi
h are summed over)

only appear on one side. As an example, we 
an turn ve
tors and dual ve
tors into ea
h

other by raising and lowering indi
es:

V

�

= �

��

V

�

!

�

= �

��

!

�

: (1.62)
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This explains why the gradient in three-dimensional 
at Eu
lidean spa
e is usually thought

of as an ordinary ve
tor, even though we have seen that it arises as a dual ve
tor; in Eu
lidean

spa
e (where the metri
 is diagonal with all entries +1) a dual ve
tor is turned into a ve
tor

with pre
isely the same 
omponents when we raise its index. You may then wonder why we

have belabored the distin
tion at all. One simple reason, of 
ourse, is that in a Lorentzian

spa
etime the 
omponents are not equal:

!

�

= (�!

0

; !

1

; !

2

; !

3

) : (1.63)

In a 
urved spa
etime, where the form of the metri
 is generally more 
ompli
ated, the dif-

feren
e is rather more dramati
. But there is a deeper reason, namely that tensors generally

have a \natural" de�nition whi
h is independent of the metri
. Even though we will always

have a metri
 available, it is helpful to be aware of the logi
al status of ea
h mathemati
al

obje
t we introdu
e. The gradient, and its a
tion on ve
tors, is perfe
tly well de�ned re-

gardless of any metri
, whereas the \gradient with upper indi
es" is not. (As an example,

we will eventually want to take variations of fun
tionals with respe
t to the metri
, and will

therefore have to know exa
tly how the fun
tional depends on the metri
, something that is

easily obs
ured by the index notation.)

Continuing our 
ompilation of tensor jargon, we refer to a tensor as symmetri
 in any

of its indi
es if it is un
hanged under ex
hange of those indi
es. Thus, if

S

���

= S

���

; (1.64)

we say that S

���

is symmetri
 in its �rst two indi
es, while if

S

���

= S

���

= S

���

= S

���

= S

���

= S

���

; (1.65)

we say that S

���

is symmetri
 in all three of its indi
es. Similarly, a tensor is antisym-

metri
 (or \skew-symmetri
") in any of its indi
es if it 
hanges sign when those indi
es are

ex
hanged; thus,

A

���

= �A

���

(1.66)

means that A

���

is antisymmetri
 in its �rst and third indi
es (or just \antisymmetri
 in �

and �"). If a tensor is (anti-) symmetri
 in all of its indi
es, we refer to it as simply (anti-)

symmetri
 (sometimes with the redundant modi�er \
ompletely"). As examples, the metri


�

��

and the inverse metri
 �

��

are symmetri
, while the Levi-Civita tensor �

����

and the

ele
tromagneti
 �eld strength tensor F

��

are antisymmetri
. (Che
k for yourself that if you

raise or lower a set of indi
es whi
h are symmetri
 or antisymmetri
, they remain that way.)

Noti
e that it makes no sense to ex
hange upper and lower indi
es with ea
h other, so don't

su

umb to the temptation to think of the Krone
ker delta Æ

�

�

as symmetri
. On the other

hand, the fa
t that lowering an index on Æ

�

�

gives a symmetri
 tensor (in fa
t, the metri
)
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means that the order of indi
es doesn't really matter, whi
h is why we don't keep tra
k index

pla
ement for this one tensor.

Given any tensor, we 
an symmetrize (or antisymmetrize) any number of its upper or

lower indi
es. To symmetrize, we take the sum of all permutations of the relevant indi
es

and divide by the number of terms:

T

(�

1

�

2

����

n

)�

�

=

1

n!

(T

�

1

�

2

����

n

�

�

+ sum over permutations of indi
es �

1

� � � �

n

) ; (1.67)

while antisymmetrization 
omes from the alternating sum:

T

[�

1

�

2

����

n

℄�

�

=

1

n!

(T

�

1

�

2

����

n

�

�

+ alternating sum over permutations of indi
es �

1

� � ��

n

) :

(1.68)

By \alternating sum" we mean that permutations whi
h are the result of an odd number of

ex
hanges are given a minus sign, thus:

T

[���℄�

=

1

6

(T

����

� T

����

+ T

����

� T

����

+ T

����

� T

����

) : (1.69)

Noti
e that round/square bra
kets denote symmetrization/antisymmetrization. Further-

more, we may sometimes want to (anti-) symmetrize indi
es whi
h are not next to ea
h

other, in whi
h 
ase we use verti
al bars to denote indi
es not in
luded in the sum:

T

(�j�j�)

=

1

2

(T

���

+ T

���

) : (1.70)

Finally, some people use a 
onvention in whi
h the fa
tor of 1=n! is omitted. The one used

here is a good one, sin
e (for example) a symmetri
 tensor satis�es

S

�

1

����

n

= S

(�

1

����

n

)

; (1.71)

and likewise for antisymmetri
 tensors.

We have been very 
areful so far to distinguish 
learly between things that are always

true (on a manifold with arbitrary metri
) and things whi
h are only true in Minkowski

spa
e in Cartesian 
oordinates. One of the most important distin
tions arises with partial

derivatives. If we are working in 
at spa
etime with Cartesian 
oordinates, then the partial

derivative of a (k; l) tensor is a (k; l+ 1) tensor; that is,

T

�

�

�

= �

�

R

�

�

(1.72)

transforms properly under Lorentz transformations. However, this will no longer be true

in more general spa
etimes, and we will have to de�ne a \
ovariant derivative" to take the

pla
e of the partial derivative. Nevertheless, we 
an still use the fa
t that partial derivatives
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give us tensor in this spe
ial 
ase, as long as we keep our wits about us. (The one ex
eption

to this warning is the partial derivative of a s
alar, �

�

�, whi
h is a perfe
tly good tensor

[the gradient℄ in any spa
etime.)

We have now a

umulated enough tensor know-how to illustrate some of these 
on
epts

using a
tual physi
s. Spe
i�
ally, we will examineMaxwell's equations of ele
trodynam-

i
s. In 19

th

-
entury notation, these are

r�B� �

t

E = 4�J

r �E = 4��

r�E+ �

t

B = 0

r �B = 0 : (1.73)

Here, E and B are the ele
tri
 and magneti
 �eld 3-ve
tors, J is the 
urrent, � is the


harge density, and r� and r� are the 
onventional 
url and divergen
e. These equations

are invariant under Lorentz transformations, of 
ourse; that's how the whole business got

started. But they don't look obviously invariant; our tensor notation 
an �x that. Let's

begin by writing these equations in just a slightly di�erent notation,

�

ijk

�

j

B

k

� �

0

E

i

= 4�J

i

�

i

E

i

= 4�J

0

�

ijk

�

j

E

k

+ �

0

B

i

= 0

�

i

B

i

= 0 : (1.74)

In these expressions, spatial indi
es have been raised and lowered with abandon, without

any attempt to keep straight where the metri
 appears. This is be
ause Æ

ij

is the metri
 on


at 3-spa
e, with Æ

ij

its inverse (they are equal as matri
es). We 
an therefore raise and

lower indi
es at will, sin
e the 
omponents don't 
hange. Meanwhile, the three-dimensional

Levi-Civita tensor �

ijk

is de�ned just as the four-dimensional one, although with one fewer

index. We have repla
ed the 
harge density by J

0

; this is legitimate be
ause the density and


urrent together form the 
urrent 4-ve
tor, J

�

= (�; J

1

; J

2

; J

3

).

From these expressions, and the de�nition (1.58) of the �eld strength tensor F

��

, it is

easy to get a 
ompletely tensorial 20

th

-
entury version of Maxwell's equations. Begin by

noting that we 
an express the �eld strength with upper indi
es as

F

0i

= E

i

F

ij

= �

ijk

B

k

: (1.75)

(To 
he
k this, note for example that F

01

= �

00

�

11

F

01

and F

12

= �

123

B

3

.) Then the �rst two

equations in (1.74) be
ome

�

j

F

ij

� �

0

F

0i

= 4�J

i
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�

i

F

0i

= 4�J

0

: (1.76)

Using the antisymmetry of F

��

, we see that these may be 
ombined into the single tensor

equation

�

�

F

��

= 4�J

�

: (1.77)

A similar line of reasoning, whi
h is left as an exer
ise to you, reveals that the third and

fourth equations in (1.74) 
an be written

�

[�

F

��℄

= 0 : (1.78)

The four traditional Maxwell equations are thus repla
ed by two, thus demonstrating the

e
onomy of tensor notation. More importantly, however, both sides of equations (1.77) and

(1.78) manifestly transform as tensors; therefore, if they are true in one inertial frame, they

must be true in any Lorentz-transformed frame. This is why tensors are so useful in relativity

| we often want to express relationships without re
ourse to any referen
e frame, and it is

ne
essary that the quantities on ea
h side of an equation transform in the same way under


hange of 
oordinates. As a matter of jargon, we will sometimes refer to quantities whi
h

are written in terms of tensors as 
ovariant (whi
h has nothing to do with \
ovariant"

as opposed to \
ontravariant"). Thus, we say that (1.77) and (1.78) together serve as the


ovariant form of Maxwell's equations, while (1.73) or (1.74) are non-
ovariant.

Let us now introdu
e a spe
ial 
lass of tensors, known as di�erential forms (or just

\forms"). A di�erential p-form is a (0; p) tensor whi
h is 
ompletely antisymmetri
. Thus,

s
alars are automati
ally 0-forms, and dual ve
tors are automati
ally one-forms (thus ex-

plaining this terminology from a while ba
k). We also have the 2-form F

��

and the 4-form

�

����

. The spa
e of all p-forms is denoted �

p

, and the spa
e of all p-form �elds over a mani-

fold M is denoted �

p

(M). A semi-straightforward exer
ise in 
ombinatori
s reveals that the

number of linearly independent p-forms on an n-dimensional ve
tor spa
e is n!=(p!(n� p)!).

So at a point on a 4-dimensional spa
etime there is one linearly independent 0-form, four

1-forms, six 2-forms, four 3-forms, and one 4-form. There are no p-forms for p > n, sin
e all

of the 
omponents will automati
ally be zero by antisymmetry.

Why should we 
are about di�erential forms? This is a hard question to answer without

some more work, but the basi
 idea is that forms 
an be both di�erentiated and integrated,

without the help of any additional geometri
 stru
ture. We will delay integration theory

until later, but see how to di�erentiate forms shortly.

Given a p-form A and a q-form B, we 
an form a (p + q)-form known as the wedge

produ
t A ^ B by taking the antisymmetrized tensor produ
t:

(A ^B)

�

1

����

p+q

=

(p+ q)!

p! q!

A

[�

1

����

p

B

�

p+1

����

p+q

℄

: (1.79)
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Thus, for example, the wedge produ
t of two 1-forms is

(A ^B)

��

= 2A

[�

B

�℄

= A

�

B

�

�A

�

B

�

: (1.80)

Note that

A ^ B = (�1)

pq

B ^ A ; (1.81)

so you 
an alter the order of a wedge produ
t if you are 
areful with signs.

The exterior derivative \d" allows us to di�erentiate p-form �elds to obtain (p+1)-form

�elds. It is de�ned as an appropriately normalized antisymmetri
 partial derivative:

(dA)

�

1

����

p+1

= (p + 1)�

[�

1

A

�

2

����

p+1

℄

: (1.82)

The simplest example is the gradient, whi
h is the exterior derivative of a 1-form:

(d�)

�

= �

�

� : (1.83)

The reason why the exterior derivative deserves spe
ial attention is that it is a tensor, even in


urved spa
etimes, unlike its 
ousin the partial derivative. Sin
e we haven't studied 
urved

spa
es yet, we 
annot prove this, but (1.82) de�nes an honest tensor no matter what the

metri
 and 
oordinates are.

Another interesting fa
t about exterior di�erentiation is that, for any form A,

d(dA) = 0 ; (1.84)

whi
h is often written d

2

= 0. This identity is a 
onsequen
e of the de�nition of d and the

fa
t that partial derivatives 
ommute, �

�

�

�

= �

�

�

�

(a
ting on anything). This leads us to

the following mathemati
al aside, just for fun. We de�ne a p-form A to be 
losed if dA = 0,

and exa
t if A = dB for some (p�1)-form B. Obviously, all exa
t forms are 
losed, but the


onverse is not ne
essarily true. On a manifold M , 
losed p-forms 
omprise a ve
tor spa
e

Z

p

(M), and exa
t forms 
omprise a ve
tor spa
e B

p

(M). De�ne a new ve
tor spa
e as the


losed forms modulo the exa
t forms:

H

p

(M) =

Z

p

(M)

B

p

(M)

: (1.85)

This is known as the pth de Rham 
ohomology ve
tor spa
e, and depends only on the

topology of the manifold M . (Minkowski spa
e is topologi
ally equivalent to R

4

, whi
h is

uninteresting, so that all of the H

p

(M) vanish for p > 0; for p = 0 we have H

0

(M) = R.

Therefore in Minkowski spa
e all 
losed forms are exa
t ex
ept for zero-forms; zero-forms


an't be exa
t sin
e there are no �1-forms for them to be the exterior derivative of.) It is

striking that information about the topology 
an be extra
ted in this way, whi
h essentially

involves the solutions to di�erential equations. The dimension b

p

of the spa
e H

p

(M) is
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alled the pth Betti number of M , and the Euler 
hara
teristi
 is given by the alternating

sum

�(M) =

n

X

p=0

(�1)

p

b

p

: (1.86)

Cohomology theory is the basis for mu
h of modern di�erential topology.

Moving ba
k to reality, the �nal operation on di�erential forms we will introdu
e is

Hodge duality. We de�ne the \Hodge star operator" on an n-dimensional manifold as a

map from p-forms to (n� p)-forms,

(�A)

�

1

����

n�p

=

1

p!

�

�

1

����

p

�

1

����

n�p

A

�

1

����

p

; (1.87)

mapping A to \A dual". Unlike our other operations on forms, the Hodge dual does depend

on the metri
 of the manifold (whi
h should be obvious, sin
e we had to raise some indi
es

on the Levi-Civita tensor in order to de�ne (1.87)). Applying the Hodge star twi
e returns

either plus or minus the original form:

� �A = (�1)

s+p(n�p)

A ; (1.88)

where s is the number of minus signs in the eigenvalues of the metri
 (for Minkowski spa
e,

s = 1).

Two fa
ts on the Hodge dual: First, \duality" in the sense of Hodge is di�erent than the

relationship between ve
tors and dual ve
tors, although both 
an be thought of as the spa
e

of linear maps from the original spa
e to R. Noti
e that the dimensionality of the spa
e of

(n� p)-forms is equal to that of the spa
e of p-forms, so this has at least a 
han
e of being

true. In the 
ase of forms, the linear map de�ned by an (n � p)-form a
ting on a p-form is

given by the dual of the wedge produ
t of the two forms. Thus, if A

(n�p)

is an (n� p)-form

and B

(p)

is a p-form at some point in spa
etime, we have

� (A

(n�p)

^B

(p)

) 2 R : (1.89)

The se
ond fa
t 
on
erns di�erential forms in 3-dimensional Eu
lidean spa
e. The Hodge

dual of the wedge produ
t of two 1-forms gives another 1-form:

� (U ^ V )

i

= �

i

jk

U

j

V

k

: (1.90)

(All of the prefa
tors 
an
el.) Sin
e 1-forms in Eu
lidean spa
e are just like ve
tors, we have

a map from two ve
tors to a single ve
tor. You should 
onvin
e yourself that this is just the


onventional 
ross produ
t, and that the appearan
e of the Levi-Civita tensor explains why

the 
ross produ
t 
hanges sign under parity (inter
hange of two 
oordinates, or equivalently

basis ve
tors). This is why the 
ross produ
t only exists in three dimensions | be
ause only
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in three dimensions do we have an interesting map from two dual ve
tors to a third dual

ve
tor. If you wanted to you 
ould de�ne a map from n� 1 one-forms to a single one-form,

but I'm not sure it would be of any use.

Ele
trodynami
s provides an espe
ially 
ompelling example of the use of di�erential

forms. From the de�nition of the exterior derivative, it is 
lear that equation (1.78) 
an

be 
on
isely expressed as 
losure of the two-form F

��

:

dF = 0 : (1.91)

Does this mean that F is also exa
t? Yes; as we've noted, Minkowski spa
e is topologi
ally

trivial, so all 
losed forms are exa
t. There must therefore be a one-form A

�

su
h that

F = dA : (1.92)

This one-form is the familiar ve
tor potential of ele
tromagnetism, with the 0 
omponent

given by the s
alar potential, A

0

= �. If one starts from the view that the A

�

is the

fundamental �eld of ele
tromagnetism, then (1.91) follows as an identity (as opposed to a

dynami
al law, an equation of motion). Gauge invarian
e is expressed by the observation

that the theory is invariant under A ! A + d� for some s
alar (zero-form) �, and this is

also immediate from the relation (1.92). The other one of Maxwell's equations, (1.77), 
an

be expressed as an equation between three-forms:

d(�F ) = 4�(�J) ; (1.93)

where the 
urrent one-form J is just the 
urrent four-ve
tor with index lowered. Filling in

the details is left for you to do.

As an intriguing aside, Hodge duality is the basis for one of the hottest topi
s in theoreti
al

physi
s today. It's hard not to noti
e that the equations (1.91) and (1.93) look very similar.

Indeed, if we set J

�

= 0, the equations are invariant under the \duality transformations"

F ! �F ;

�F ! �F : (1.94)

We therefore say that the va
uum Maxwell's equations are duality invariant, while the invari-

an
e is spoiled in the presen
e of 
harges. We might imagine that magneti
 as well as ele
tri


monopoles existed in nature; then we 
ould add a magneti
 
urrent term 4�(�J

M

) to the

right hand side of (1.91), and the equations would be invariant under duality transformations

plus the additional repla
ement J $ J

M

. (Of 
ourse a nonzero right hand side to (1.91) is

in
onsistent with F = dA, so this idea only works if A

�

is not a fundamental variable.) Long

ago Dira
 
onsidered the idea of magneti
 monopoles and showed that a ne
essary 
ondition

for their existen
e is that the fundamental monopole 
harge be inversely proportional to
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the fundamental ele
tri
 
harge. Now, the fundamental ele
tri
 
harge is a small number;

ele
trodynami
s is \weakly 
oupled", whi
h is why perturbation theory is so remarkably

su

essful in quantum ele
trodynami
s (QED). But Dira
's 
ondition on magneti
 
harges

implies that a duality transformation takes a theory of weakly 
oupled ele
tri
 
harges to a

theory of strongly 
oupled magneti
 monopoles (and vi
e-versa). Unfortunately monopoles

don't exist (as far as we know), so these ideas aren't dire
tly appli
able to ele
tromagnetism;

but there are some theories (su
h as supersymmetri
 non-abelian gauge theories) for whi
h

it has been long 
onje
tured that some sort of duality symmetry may exist. If it did, we

would have the opportunity to analyze a theory whi
h looked strongly 
oupled (and therefore

hard to solve) by looking at the weakly 
oupled dual version. Re
ently work by Seiberg and

Witten and others has provided very strong eviden
e that this is exa
tly what happens in


ertain theories. The hope is that these te
hniques will allow us to explore various phenom-

ena whi
h we know exist in strongly 
oupled quantum �eld theories, su
h as 
on�nement of

quarks in hadrons.

We've now gone over essentially everything there is to know about the 
are and feeding of

tensors. In the next se
tion we will look more 
arefully at the rigorous de�nitions of manifolds

and tensors, but the basi
 me
hani
s have been pretty well 
overed. Before jumping to more

abstra
t mathemati
s, let's review how physi
s works in Minkowski spa
etime.

Start with the worldline of a single parti
le. This is spe
i�ed by a map R ! M , where

M is the manifold representing spa
etime; we usually think of the path as a parameterized


urve x

�

(�). As mentioned earlier, the tangent ve
tor to this path is dx

�

=d� (note that it

depends on the parameterization). An obje
t of primary interest is the norm of the tangent

ve
tor, whi
h serves to 
hara
terize the path; if the tangent ve
tor is timelike/null/spa
elike

at some parameter value �, we say that the path is timelike/null/spa
elike at that point. This

explains why the same words are used to 
lassify ve
tors in the tangent spa
e and intervals

between two points | be
ause a straight line 
onne
ting, say, two timelike separated points

will itself be timelike at every point along the path.

Nevertheless, it's important to be aware of the sleight of hand whi
h is being pulled here.

The metri
, as a (0; 2) tensor, is a ma
hine whi
h a
ts on two ve
tors (or two 
opies of the

same ve
tor) to produ
e a number. It is therefore very natural to 
lassify tangent ve
tors

a

ording to the sign of their norm. But the interval between two points isn't something

quite so natural; it depends on a spe
i�
 
hoi
e of path (a \straight line") whi
h 
onne
ts

the points, and this 
hoi
e in turn depends on the fa
t that spa
etime is 
at (whi
h allows

a unique 
hoi
e of straight line between the points). A more natural obje
t is the line

element, or in�nitesimal interval:

ds

2

= �

��

dx

�

dx

�

: (1.95)

From this de�nition it is tempting to take the square root and integrate along a path to

obtain a �nite interval. But sin
e ds

2

need not be positive, we de�ne di�erent pro
edures
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t

x

spacelike

null

timelike

dx
--
d

x  (  )

λ

µ

µ
λ

for di�erent 
ases. For spa
elike paths we de�ne the path length

�s =

Z

s

�

��

dx

�

d�

dx

�

d�

d� ; (1.96)

where the integral is taken over the path. For null paths the interval is zero, so no extra

formula is required. For timelike paths we de�ne the proper time

�� =

Z

s

��

��

dx

�

d�

dx

�

d�

d� ; (1.97)

whi
h will be positive. Of 
ourse we may 
onsider paths that are timelike in some pla
es and

spa
elike in others, but fortunately it is seldom ne
essary sin
e the paths of physi
al parti
les

never 
hange their 
hara
ter (massive parti
les move on timelike paths, massless parti
les

move on null paths). Furthermore, the phrase \proper time" is espe
ially appropriate, sin
e

� a
tually measures the time elapsed on a physi
al 
lo
k 
arried along the path. This point of

view makes the \twin paradox" and similar puzzles very 
lear; two worldlines, not ne
essarily

straight, whi
h interse
t at two di�erent events in spa
etime will have proper times measured

by the integral (1.97) along the appropriate paths, and these two numbers will in general be

di�erent even if the people travelling along them were born at the same time.

Let's move from the 
onsideration of paths in general to the paths of massive parti
les

(whi
h will always be timelike). Sin
e the proper time is measured by a 
lo
k travelling on

a timelike worldline, it is 
onvenient to use � as the parameter along the path. That is, we

use (1.97) to 
ompute � (�), whi
h (if � is a good parameter in the �rst pla
e) we 
an invert

to obtain �(� ), after whi
h we 
an think of the path as x

�

(� ). The tangent ve
tor in this
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parameterization is known as the four-velo
ity, U

�

:

U

�

=

dx

�

d�

: (1.98)

Sin
e d�

2

= ��

��

dx

�

dx

�

, the four-velo
ity is automati
ally normalized:

�

��

U

�

U

�

= �1 : (1.99)

(It will always be negative, sin
e we are only de�ning it for timelike traje
tories. You 
ould

de�ne an analogous ve
tor for spa
elike paths as well; null paths give some extra problems

sin
e the norm is zero.) In the rest frame of a parti
le, its four-velo
ity has 
omponents

U

�

= (1; 0; 0; 0).

A related ve
tor is the energy-momentum four-ve
tor, de�ned by

p

�

= mU

�

; (1.100)

where m is the mass of the parti
le. The mass is a �xed quantity independent of inertial

frame; what you may be used to thinking of as the \rest mass." It turns out to be mu
h

more 
onvenient to take this as the mass on
e and for all, rather than thinking of mass as

depending on velo
ity. The energy of a parti
le is simply p

0

, the timelike 
omponent of its

energy-momentum ve
tor. Sin
e it's only one 
omponent of a four-ve
tor, it is not invariant

under Lorentz transformations; that's to be expe
ted, however, sin
e the energy of a parti
le

at rest is not the same as that of the same parti
le in motion. In the parti
le's rest frame we

have p

0

= m; re
alling that we have set 
 = 1, we �nd that we have found the equation that

made Einstein a 
elebrity, E = m


2

. (The �eld equations of general relativity are a
tually

mu
h more important than this one, but \R

��

�

1

2

Rg

��

= 8�GT

��

" doesn't eli
it the vis
eral

rea
tion that you get from \E = m


2

".) In a moving frame we 
an �nd the 
omponents of

p

�

by performing a Lorentz transformation; for a parti
le moving with (three-) velo
ity v

along the x axis we have

p

�

= (
m; v
m; 0; 0) ; (1.101)

where 
 = 1=

p

1 � v

2

. For small v, this gives p

0

= m +

1

2

mv

2

(what we usually think of

as rest energy plus kineti
 energy) and p

1

= mv (what we usually think of as [Newtonian℄

momentum). So the energy-momentum ve
tor lives up to its name.

The 
enterpie
e of pre-relativity physi
s is Newton's 2nd Law, or f = ma = dp=dt. An

analogous equation should hold in SR, and the requirement that it be tensorial leads us

dire
tly to introdu
e a for
e four-ve
tor f

�

satisfying

f

�

= m

d

2

d�

2

x

�

(� ) =

d

d�

p

�

(� ) : (1.102)

The simplest example of a for
e in Newtonian physi
s is the for
e due to gravity. In relativity,

however, gravity is not des
ribed by a for
e, but rather by the 
urvature of spa
etime itself.
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Instead, let us 
onsider ele
tromagnetism. The three-dimensional Lorentz for
e is given

by f = q(E + v � B), where q is the 
harge on the parti
le. We would like a tensorial

generalization of this equation. There turns out to be a unique answer:

f

�

= qU

�

F

�

�

: (1.103)

You 
an 
he
k for yourself that this redu
es to the Newtonian version in the limit of small

velo
ities. Noti
e how the requirement that the equation be tensorial, whi
h is one way of

guaranteeing Lorentz invarian
e, severely restri
ted the possible expressions we 
ould get.

This is an example of a very general phenomenon, in whi
h a small number of an apparently

endless variety of possible physi
al laws are pi
ked out by the demands of symmetry.

Although p

�

provides a 
omplete des
ription of the energy and momentum of a parti
le,

for extended systems it is ne
essary to go further and de�ne the energy-momentumtensor

(sometimes 
alled the stress-energy tensor), T

��

. This is a symmetri
 (2; 0) tensor whi
h tells

us all we need to know about the energy-like aspe
ts of a system: energy density, pressure,

stress, and so forth. A general de�nition of T

��

is \the 
ux of four-momentum p

�

a
ross a

surfa
e of 
onstant x

�

". To make this more 
on
rete, let's 
onsider the very general 
ategory

of matter whi
h may be 
hara
terized as a 
uid | a 
ontinuum of matter des
ribed by

ma
ros
opi
 quantities su
h as temperature, pressure, entropy, vis
osity, et
. In fa
t this

de�nition is so general that it is of little use. In general relativity essentially all interesting

types of matter 
an be thought of as perfe
t 
uids, from stars to ele
tromagneti
 �elds to

the entire universe. S
hutz de�nes a perfe
t 
uid to be one with no heat 
ondu
tion and no

vis
osity, while Weinberg de�nes it as a 
uid whi
h looks isotropi
 in its rest frame; these

two viewpoints turn out to be equivalent. Operationally, you should think of a perfe
t 
uid

as one whi
h may be 
ompletely 
hara
terized by its pressure and density.

To understand perfe
t 
uids, let's start with the even simpler example of dust. Dust

is de�ned as a 
olle
tion of parti
les at rest with respe
t to ea
h other, or alternatively

as a perfe
t 
uid with zero pressure. Sin
e the parti
les all have an equal velo
ity in any

�xed inertial frame, we 
an imagine a \four-velo
ity �eld" U

�

(x) de�ned all over spa
etime.

(Indeed, its 
omponents are the same at ea
h point.) De�ne the number-
ux four-ve
tor

to be

N

�

= nU

�

; (1.104)

where n is the number density of the parti
les as measured in their rest frame. Then N

0

is the number density of parti
les as measured in any other frame, while N

i

is the 
ux of

parti
les in the x

i

dire
tion. Let's now imagine that ea
h of the parti
les have the same mass

m. Then in the rest frame the energy density of the dust is given by

� = nm : (1.105)
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By de�nition, the energy density 
ompletely spe
i�es the dust. But � only measures the

energy density in the rest frame; what about other frames? We noti
e that both n and

m are 0-
omponents of four-ve
tors in their rest frame; spe
i�
ally, N

�

= (n; 0; 0; 0) and

p

�

= (m; 0; 0; 0). Therefore � is the � = 0, � = 0 
omponent of the tensor p
N as measured

in its rest frame. We are therefore led to de�ne the energy-momentum tensor for dust:

T

��

dust

= p

�

N

�

= nmU

�

U

�

= �U

�

U

�

; (1.106)

where � is de�ned as the energy density in the rest frame.

Having mastered dust, more general perfe
t 
uids are not mu
h more 
ompli
ated. Re-

member that \perfe
t" 
an be taken to mean \isotropi
 in its rest frame." This in turn

means that T

��

is diagonal | there is no net 
ux of any 
omponent of momentum in an

orthogonal dire
tion. Furthermore, the nonzero spa
elike 
omponents must all be equal,

T

11

= T

22

= T

33

. The only two independent numbers are therefore T

00

and one of the T

ii

;

we 
an 
hoose to 
all the �rst of these the energy density �, and the se
ond the pressure

p. (Sorry that it's the same letter as the momentum.) The energy-momentum tensor of a

perfe
t 
uid therefore takes the following form in its rest frame:

T

��

=

0

B

B

B

�

� 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

1

C

C

C

A

: (1.107)

We would like, of 
ourse, a formula whi
h is good in any frame. For dust we had T

��

=

�U

�

U

�

, so we might begin by guessing (�+ p)U

�

U

�

, whi
h gives

0

B

B

B

�

� + p 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

C

C

C

A

: (1.108)

To get the answer we want we must therefore add

0

B

B

B

�

�p 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

1

C

C

C

A

: (1.109)

Fortunately, this has an obvious 
ovariant generalization, namely p�

��

. Thus, the general

form of the energy-momentum tensor for a perfe
t 
uid is

T

��

= (�+ p)U

�

U

�

+ p�

��

: (1.110)

This is an important formula for appli
ations su
h as stellar stru
ture and 
osmology.
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As further examples, let's 
onsider the energy-momentum tensors of ele
tromagnetism

and s
alar �eld theory. Without any explanation at all, these are given by

T

��

e+m

=

�1

4�

(F

��

F

�

�

�

1

4

�

��

F

��

F

��

) ; (1.111)

and

T

��

s
alar

= �

��

�

��

�

�

��

�

��

1

2

�

��

(�

��

�

�

��

�

�+m

2

�

2

) : (1.112)

You 
an 
he
k for yourself that, for example, T

00

in ea
h 
ase is equal to what you would

expe
t the energy density to be.

Besides being symmetri
, T

��

has the even more important property of being 
onserved.

In this 
ontext, 
onservation is expressed as the vanishing of the \divergen
e":

�

�

T

��

= 0 : (1.113)

This is a set of four equations, one for ea
h value of �. The � = 0 equation 
orresponds to


onservation of energy, while �

�

T

�k

= 0 expresses 
onservation of the k

th


omponent of the

momentum. We are not going to prove this in general; the proof follows for any individual

sour
e of matter from the equations of motion obeyed by that kind of matter. In fa
t, one

way to de�ne T

��

would be \a (2; 0) tensor with units of energy per volume, whi
h is 
on-

served." You 
an prove 
onservation of the energy-momentum tensor for ele
tromagnetism,

for example, by taking the divergen
e of (1.111) and using Maxwell's equations as previously

dis
ussed.

A �nal aside: we have already mentioned that in general relativity gravitation does not


ount as a \for
e." As a related point, the gravitational �eld also does not have an energy-

momentum tensor. In fa
t it is very hard to 
ome up with a sensible lo
al expression for the

energy of a gravitational �eld; a number of suggestions have been made, but they all have

their drawba
ks. Although there is no \
orre
t" answer, it is an important issue from the

point of view of asking seemingly reasonable questions su
h as \What is the energy emitted

per se
ond from a binary pulsar as the result of gravitational radiation?"
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2 Manifolds

After the invention of spe
ial relativity, Einstein tried for a number of years to invent a

Lorentz-invariant theory of gravity, without su

ess. His eventual breakthrough was to

repla
e Minkowski spa
etime with a 
urved spa
etime, where the 
urvature was 
reated by

(and rea
ted ba
k on) energy and momentum. Before we explore how this happens, we have

to learn a bit about the mathemati
s of 
urved spa
es. First we will take a look at manifolds

in general, and then in the next se
tion study 
urvature. In the interest of generality we will

usually work in n dimensions, although you are permitted to take n = 4 if you like.

A manifold (or sometimes \di�erentiable manifold") is one of the most fundamental


on
epts in mathemati
s and physi
s. We are all aware of the properties of n-dimensional

Eu
lidean spa
e, R

n

, the set of n-tuples (x

1

; : : : ; x

n

). The notion of a manifold 
aptures the

idea of a spa
e whi
h may be 
urved and have a 
ompli
ated topology, but in lo
al regions

looks just likeR

n

. (Here by \looks like" we do not mean that the metri
 is the same, but only

basi
 notions of analysis like open sets, fun
tions, and 
oordinates.) The entire manifold is


onstru
ted by smoothly sewing together these lo
al regions. Examples of manifolds in
lude:

� R

n

itself, in
luding the line (R), the plane (R

2

), and so on. This should be obvious,

sin
e R

n

looks like R

n

not only lo
ally but globally.

� The n-sphere, S

n

. This 
an be de�ned as the lo
us of all points some �xed distan
e

from the origin in R

n+1

. The 
ir
le is of 
ourse S

1

, and the two-sphere S

2

will be one

of our favorite examples of a manifold.

� The n-torus T

n

results from taking an n-dimensional 
ube and identifying opposite

sides. Thus T

2

is the traditional surfa
e of a doughnut.

identify opposite sides

31
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� A Riemann surfa
e of genus g is essentially a two-torus with g holes instead of just

one. S

2

may be thought of as a Riemann surfa
e of genus zero. For those of you who

know what the words mean, every \
ompa
t orientable boundaryless" two-dimensional

manifold is a Riemann surfa
e of some genus.

genus 0 genus 1 genus 2

� More abstra
tly, a set of 
ontinuous transformations su
h as rotations in R

n

forms a

manifold. Lie groups are manifolds whi
h also have a group stru
ture.

� The dire
t produ
t of two manifolds is a manifold. That is, given manifolds M and

M

0

of dimension n and n

0

, we 
an 
onstru
t a manifoldM �M

0

, of dimension n+ n

0

,


onsisting of ordered pairs (p; p

0

) for all p 2M and p

0

2M

0

.

With all of these examples, the notion of a manifold may seem va
uous; what isn't a

manifold? There are plenty of things whi
h are not manifolds, be
ause somewhere they

do not look lo
ally like R

n

. Examples in
lude a one-dimensional line running into a two-

dimensional plane, and two 
ones stu
k together at their verti
es. (A single 
one is okay;

you 
an imagine smoothing out the vertex.)

We will now approa
h the rigorous de�nition of this simple idea, whi
h requires a number

of preliminary de�nitions. Many of them are pretty 
lear anyway, but it's ni
e to be 
omplete.



2 MANIFOLDS 33

The most elementary notion is that of a map between two sets. (We assume you know

what a set is.) Given two setsM and N , a map � :M ! N is a relationship whi
h assigns, to

ea
h element ofM , exa
tly one element of N . A map is therefore just a simple generalization

of a fun
tion. The 
anoni
al pi
ture of a map looks like this:

ϕ

M

N

Given two maps � : A! B and  : B ! C, we de�ne the 
omposition  Æ � : A! C

by the operation ( Æ �)(a) =  (�(a)). So a 2 A, �(a) 2 B, and thus ( Æ �)(a) 2 C. The

order in whi
h the maps are written makes sense, sin
e the one on the right a
ts �rst. In

pi
tures:

ψ   ϕ

A

B

C

ϕ ψ

A map � is 
alled one-to-one (or \inje
tive") if ea
h element of N has at most one

element of M mapped into it, and onto (or \surje
tive") if ea
h element of N has at least

one element of M mapped into it. (If you think about it, a better name for \one-to-one"

would be \two-to-two".) Consider a fun
tion � : R! R. Then �(x) = e

x

is one-to-one, but

not onto; �(x) = x

3

� x is onto, but not one-to-one; �(x) = x

3

is both; and �(x) = x

2

is

neither.

The set M is known as the domain of the map �, and the set of points in N whi
h M

gets mapped into is 
alled the image of �. For some subset U � N , the set of elements of

M whi
h get mapped to U is 
alled the preimage of U under �, or �

�1

(U). A map whi
h is
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x x

x

one-to-one, 

not onto

onto, not

one-to-one

both neither

x x

x  - xe
x 3

23

x

both one-to-one and onto is known as invertible (or \bije
tive"). In this 
ase we 
an de�ne

the inverse map �

�1

: N ! M by (�

�1

Æ �)(a) = a. (Note that the same symbol �

�1

is

used for both the preimage and the inverse map, even though the former is always de�ned

and the latter is only de�ned in some spe
ial 
ases.) Thus:

-1

M N
ϕ

ϕ

The notion of 
ontinuity of a map between topologi
al spa
es (and thus manifolds) is

a
tually a very subtle one, the pre
ise formulation of whi
h we won't really need. However

the intuitive notions of 
ontinuity and di�erentiability of maps � : R

m

! R

n

between

Eu
lidean spa
es are useful. A map from R

m

to R

n

takes an m-tuple (x

1

; x

2

; : : : ; x

m

) to an

n-tuple (y

1

; y

2

; : : : ; y

n

), and 
an therefore be thought of as a 
olle
tion of n fun
tions �

i

of
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m variables:

y

1

= �

1

(x

1

; x

2

; : : : ; x

m

)

y

2

= �

2

(x

1

; x

2

; : : : ; x

m

)

�

�

�

y

n

= �

n

(x

1

; x

2

; : : : ; x

m

) :

(2.1)

We will refer to any one of these fun
tions as C

p

if it is 
ontinuous and p-times di�erentiable,

and refer to the entire map � : R

m

! R

n

as C

p

if ea
h of its 
omponent fun
tions are at

least C

p

. Thus a C

0

map is 
ontinuous but not ne
essarily di�erentiable, while a C

1

map

is 
ontinuous and 
an be di�erentiated as many times as you like. C

1

maps are sometimes


alled smooth. We will 
all two sets M and N di�eomorphi
 if there exists a C

1

map

� :M ! N with a C

1

inverse �

�1

: N !M ; the map � is then 
alled a di�eomorphism.

Aside: The notion of two spa
es being di�eomorphi
 only applies to manifolds, where a

notion of di�erentiability is inherited from the fa
t that the spa
e resemblesR

n

lo
ally. But

\
ontinuity" of maps between topologi
al spa
es (not ne
essarily manifolds) 
an be de�ned,

and we say that two su
h spa
es are \homeomorphi
," whi
h means \topologi
ally equivalent

to," if there is a 
ontinuous map between them with a 
ontinuous inverse. It is therefore


on
eivable that spa
es exist whi
h are homeomorphi
 but not di�eomorphi
; topologi
ally

the same but with distin
t \di�erentiable stru
tures." In 1964 Milnor showed that S

7

had 28

di�erent di�erentiable stru
tures; it turns out that for n < 7 there is only one di�erentiable

stru
ture on S

n

, while for n > 7 the number grows very large. R

4

has in�nitely many

di�erentiable stru
tures.

One pie
e of 
onventional 
al
ulus that we will need later is the 
hain rule. Let us

imagine that we have maps f : R

m

! R

n

and g : R

n

! R

l

, and therefore the 
omposition

(g Æ f) : R

m

! R

l

.

g    f

g

R

R

R
m

n

l

f

We 
an represent ea
h spa
e in terms of 
oordinates: x

a

on R

m

, y

b

on R

n

, and z




on

R

l

, where the indi
es range over the appropriate values. The 
hain rule relates the partial
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derivatives of the 
omposition to the partial derivatives of the individual maps:

�

�x

a

(g Æ f)




=

X

b

�f

b

�x

a

�g




�y

b

: (2.2)

This is usually abbreviated to

�

�x

a

=

X

b

�y

b

�x

a

�

�y

b

: (2.3)

There is nothing illegal or immoral about using this form of the 
hain rule, but you should

be able to visualize the maps that underlie the 
onstru
tion. Re
all that when m = n

the determinant of the matrix �y

b

=�x

a

is 
alled the Ja
obian of the map, and the map is

invertible whenever the Ja
obian is nonzero.

These basi
 de�nitions were presumably familiar to you, even if only vaguely remembered.

We will now put them to use in the rigorous de�nition of a manifold. Unfortunately, a

somewhat baroque pro
edure is required to formalize this relatively intuitive notion. We

will �rst have to de�ne the notion of an open set, on whi
h we 
an put 
oordinate systems,

and then sew the open sets together in an appropriate way.

Start with the notion of an open ball, whi
h is the set of all points x in R

n

su
h that

jx � yj < r for some �xed y 2 R

n

and r 2 R, where jx� yj = [

P

i

(x

i

� y

i

)

2

℄

1=2

. Note that

this is a stri
t inequality | the open ball is the interior of an n-sphere of radius r 
entered

at y.

r

y

open ball

An open set in R

n

is a set 
onstru
ted from an arbitrary (maybe in�nite) union of open

balls. In other words, V � R

n

is open if, for any y 2 V , there is an open ball 
entered

at y whi
h is 
ompletely inside V . Roughly speaking, an open set is the interior of some

(n � 1)-dimensional 
losed surfa
e (or the union of several su
h interiors). By de�ning a

notion of open sets, we have equipped R

n

with a topology | in this 
ase, the \standard

metri
 topology."
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A 
hart or 
oordinate system 
onsists of a subset U of a set M , along with a one-to-

one map � : U ! R

n

, su
h that the image �(U) is open in R. (Any map is onto its image,

so the map � : U ! �(U) is invertible.) We then 
an say that U is an open set in M . (We

have thus indu
ed a topology on M , although we will not explore this.)

U

U

M

ϕ(   )

R
n

ϕ

A C

1

atlas is an indexed 
olle
tion of 
harts f(U

�

; �

�

)g whi
h satis�es two 
onditions:

1. The union of the U

�

is equal to M ; that is, the U

�


over M .

2. The 
harts are smoothly sewn together. More pre
isely, if two 
harts overlap, U

�

\U

�

6=

;, then the map (�

�

Æ �

�1

�

) takes points in �

�

(U

�

\ U

�

) � R

n

onto �

�

(U

�

\ U

�

) � R

n

,

and all of these maps must be C

1

where they are de�ned. This should be 
learer in

pi
tures:

Uα

ϕ (    )

ϕ (    )

ϕ

ϕ

ϕ    ϕ

ϕ    ϕ
β α

α β

α

β
Uβ

Uα

α

β

Uβ

-1

-1

these maps are only
defined on the shaded
regions, and must be
smooth there.

M

R

R

n

n
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So a 
hart is what we normally think of as a 
oordinate system on some open set, and an

atlas is a system of 
harts whi
h are smoothly related on their overlaps.

At long last, then: a C

1

n-dimensional manifold (or n-manifold for short) is simply

a set M along with a \maximal atlas", one that 
ontains every possible 
ompatible 
hart.

(We 
an also repla
e C

1

by C

p

in all the above de�nitions. For our purposes the degree of

di�erentiability of a manifold is not 
ru
ial; we will always assume that any manifold is as

di�erentiable as ne
essary for the appli
ation under 
onsideration.) The requirement that

the atlas be maximal is so that two equivalent spa
es equipped with di�erent atlases don't


ount as di�erent manifolds. This de�nition 
aptures in formal terms our notion of a set

that looks lo
ally like R

n

. Of 
ourse we will rarely have to make use of the full power of the

de�nition, but pre
ision is its own reward.

One thing that is ni
e about our de�nition is that it does not rely on an embedding of the

manifold in some higher-dimensional Eu
lidean spa
e. In fa
t any n-dimensional manifold


an be embedded in R

2n

(\Whitney's embedding theorem"), and sometimes we will make

use of this fa
t (su
h as in our de�nition of the sphere above). But it's important to re
ognize

that the manifold has an individual existen
e independent of any embedding. We have no

reason to believe, for example, that four-dimensional spa
etime is stu
k in some larger spa
e.

(A
tually a number of people, string theorists and so forth, believe that our four-dimensional

world is part of a ten- or eleven-dimensional spa
etime, but as far as GR is 
on
erned the

4-dimensional view is perfe
tly adequate.)

Why was it ne
essary to be so �ni
ky about 
harts and their overlaps, rather than just


overing every manifold with a single 
hart? Be
ause most manifolds 
annot be 
overed

with just one 
hart. Consider the simplest example, S

1

. There is a 
onventional 
oordinate

system, � : S

1

! R, where � = 0 at the top of the 
ir
le and wraps around to 2�. However,

in the de�nition of a 
hart we have required that the image �(S

1

) be open in R. If we in
lude

either � = 0 or � = 2�, we have a 
losed interval rather than an open one; if we ex
lude both

points, we haven't 
overed the whole 
ir
le. So we need at least two 
harts, as shown.

U

S
1

2

U1

A somewhat more 
ompli
ated example is provided by S

2

, where on
e again no single
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hart will 
over the manifold. A Mer
ator proje
tion, traditionally used for world maps,

misses both the North and South poles (as well as the International Date Line, whi
h involves

the same problem with � that we found for S

1

.) Let's take S

2

to be the set of points in R

3

de�ned by (x

1

)

2

+ (x

2

)

2

+ (x

3

)

2

= 1. We 
an 
onstru
t a 
hart from an open set U

1

, de�ned

to be the sphere minus the north pole, via \stereographi
 proje
tion":

x

x

x   = -1

x1

2

3

(y  , y  )1 2
3

(x  , x  , x  )1 32

Thus, we draw a straight line from the north pole to the plane de�ned by x

3

= �1, and

assign to the point on S

2

inter
epted by the line the Cartesian 
oordinates (y

1

; y

2

) of the

appropriate point on the plane. Expli
itly, the map is given by

�

1

(x

1

; x

2

; x

3

) � (y

1

; y

2

) =

 

2x

1

1� x

3

;

2x

2

1� x

3

!

: (2.4)

You are en
ouraged to 
he
k this for yourself. Another 
hart (U

2

; �

2

) is obtained by proje
t-

ing from the south pole to the plane de�ned by x

3

= +1. The resulting 
oordinates 
over

the sphere minus the south pole, and are given by

�

2

(x

1

; x

2

; x

3

) � (z

1

; z

2

) =

 

2x

1

1 + x

3

;

2x

2

1 + x

3

!

: (2.5)

Together, these two 
harts 
over the entire manifold, and they overlap in the region �1 <

x

3

< +1. Another thing you 
an 
he
k is that the 
omposition �

2

Æ �

�1

1

is given by

z

i

=

4y

i

[(y

1

)

2

+ (y

2

)

2

℄

; (2.6)

and is C

1

in the region of overlap. As long as we restri
t our attention to this region, (2.6)

is just what we normally think of as a 
hange of 
oordinates.

We therefore see the ne
essity of 
harts and atlases: many manifolds 
annot be 
overed

with a single 
oordinate system. (Although some 
an, even ones with nontrivial topology.

Can you think of a single good 
oordinate system that 
overs the 
ylinder, S

1

�R?) Never-

theless, it is very often most 
onvenient to work with a single 
hart, and just keep tra
k of

the set of points whi
h aren't in
luded.
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The fa
t that manifolds look lo
ally like R

n

, whi
h is manifested by the 
onstru
tion of


oordinate 
harts, introdu
es the possibility of analysis on manifolds, in
luding operations

su
h as di�erentiation and integration. Consider two manifolds M and N of dimensions m

and n, with 
oordinate 
harts � on M and  on N . Imagine we have a fun
tion f :M ! N ,

M Nf

R Rψ

ϕϕ-1

m
f       ϕ-1 n

-1ψ ψ

Just thinking of M and N as sets, we 
annot non
halantly di�erentiate the map f , sin
e we

don't know what su
h an operation means. But the 
oordinate 
harts allow us to 
onstru
t

the map ( Æ f Æ �

�1

) : R

m

! R

n

. (Feel free to insert the words \where the maps are

de�ned" wherever appropriate, here and later on.) This is just a map between Eu
lidean

spa
es, and all of the 
on
epts of advan
ed 
al
ulus apply. For example f , thought of as

an N -valued fun
tion on M , 
an be di�erentiated to obtain �f=�x

�

, where the x

�

represent

R

m

. The point is that this notation is a short
ut, and what is really going on is

�f

�x

�

�

�

�x

�

( Æ f Æ �

�1

)(x

�

) : (2.7)

It would be far too unwieldy (not to mention pedanti
) to write out the 
oordinate maps

expli
itly in every 
ase. The shorthand notation of the left-hand-side will be suÆ
ient for

most purposes.

Having 
onstru
ted this groundwork, we 
an now pro
eed to introdu
e various kinds

of stru
ture on manifolds. We begin with ve
tors and tangent spa
es. In our dis
ussion

of spe
ial relativity we were intentionally vague about the de�nition of ve
tors and their

relationship to the spa
etime. One point that was stressed was the notion of a tangent spa
e

| the set of all ve
tors at a single point in spa
etime. The reason for this emphasis was to

remove from your minds the idea that a ve
tor stret
hes from one point on the manifold to

another, but instead is just an obje
t asso
iated with a single point. What is temporarily

lost by adopting this view is a way to make sense of statements like \the ve
tor points in
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the x dire
tion" | if the tangent spa
e is merely an abstra
t ve
tor spa
e asso
iated with

ea
h point, it's hard to know what this should mean. Now it's time to �x the problem.

Let's imagine that we wanted to 
onstru
t the tangent spa
e at a point p in a manifold

M , using only things that are intrinsi
 to M (no embeddings in higher-dimensional spa
es

et
.). One �rst guess might be to use our intuitive knowledge that there are obje
ts 
alled

\tangent ve
tors to 
urves" whi
h belong in the tangent spa
e. We might therefore 
onsider

the set of all parameterized 
urves through p | that is, the spa
e of all (nondegenerate)

maps 
 : R! M su
h that p is in the image of 
. The temptation is to de�ne the tangent

spa
e as simply the spa
e of all tangent ve
tors to these 
urves at the point p. But this is

obviously 
heating; the tangent spa
e T

p

is supposed to be the spa
e of ve
tors at p, and

before we have de�ned this we don't have an independent notion of what \the tangent ve
tor

to a 
urve" is supposed to mean. In some 
oordinate system x

�

any 
urve through p de�nes

an element of R

n

spe
i�ed by the n real numbers dx

�

=d� (where � is the parameter along

the 
urve), but this map is 
learly 
oordinate-dependent, whi
h is not what we want.

Nevertheless we are on the right tra
k, we just have to make things independent of


oordinates. To this end we de�ne F to be the spa
e of all smooth fun
tions on M (that

is, C

1

maps f : M ! R). Then we noti
e that ea
h 
urve through p de�nes an operator

on this spa
e, the dire
tional derivative, whi
h maps f ! df=d� (at p). We will make the

following 
laim: the tangent spa
e T

p


an be identi�ed with the spa
e of dire
tional derivative

operators along 
urves through p. To establish this idea we must demonstrate two things:

�rst, that the spa
e of dire
tional derivatives is a ve
tor spa
e, and se
ond that it is the

ve
tor spa
e we want (it has the same dimensionality as M , yields a natural idea of a ve
tor

pointing along a 
ertain dire
tion, and so on).

The �rst 
laim, that dire
tional derivatives form a ve
tor spa
e, seems straightforward

enough. Imagine two operators

d

d�

and

d

d�

representing derivatives along two 
urves through

p. There is no problem adding these and s
aling by real numbers, to obtain a new operator

a

d

d�

+ b

d

d�

. It is not immediately obvious, however, that the spa
e 
loses; i.e., that the

resulting operator is itself a derivative operator. A good derivative operator is one that

a
ts linearly on fun
tions, and obeys the 
onventional Leibniz (produ
t) rule on produ
ts

of fun
tions. Our new operator is manifestly linear, so we need to verify that it obeys the

Leibniz rule. We have

 

a

d

d�

+ b

d

d�

!

(fg) = af

dg

d�

+ ag

df

d�

+ bf

dg

d�

+ bg

df

d�

=

 

a

df

d�

+ b

df

d�

!

g +

 

a

dg

d�

+ b

dg

d�

!

f : (2.8)

As we had hoped, the produ
t rule is satis�ed, and the set of dire
tional derivatives is

therefore a ve
tor spa
e.
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Is it the ve
tor spa
e that we would like to identify with the tangent spa
e? The easiest

way to be
ome 
onvin
ed is to �nd a basis for the spa
e. Consider again a 
oordinate 
hart

with 
oordinates x

�

. Then there is an obvious set of n dire
tional derivatives at p, namely

the partial derivatives �

�

at p.

p

1

ρ

2

ρ

x
x2

1

We are now going to 
laim that the partial derivative operators f�

�

g at p form a basis for

the tangent spa
e T

p

. (It follows immediately that T

p

is n-dimensional, sin
e that is the

number of basis ve
tors.) To see this we will show that any dire
tional derivative 
an be

de
omposed into a sum of real numbers times partial derivatives. This is in fa
t just the

familiar expression for the 
omponents of a tangent ve
tor, but it's ni
e to see it from the

big-ma
hinery approa
h. Consider an n-manifold M , a 
oordinate 
hart � : M ! R

n

, a


urve 
 : R!M , and a fun
tion f :M ! R. This leads to the following tangle of maps:

f -1       ϕ

ϕϕ-1

f

M

R

R

γ

ϕ γ

f γ

x
µ

R
n

If � is the parameter along 
, we want to expand the ve
tor/operator

d

d�

in terms of the
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partials �

�

. Using the 
hain rule (2.2), we have

d

d�

f =

d

d�

(f Æ 
)

=

d

d�

[(f Æ �

�1

) Æ (� Æ 
)℄

=

d(� Æ 
)

�

d�

�(f Æ �

�1

)

�x

�

=

dx

�

d�

�

�

f : (2.9)

The �rst line simply takes the informal expression on the left hand side and rewrites it as

an honest derivative of the fun
tion (f Æ 
) : R! R. The se
ond line just 
omes from the

de�nition of the inverse map �

�1

(and asso
iativity of the operation of 
omposition). The

third line is the formal 
hain rule (2.2), and the last line is a return to the informal notation

of the start. Sin
e the fun
tion f was arbitrary, we have

d

d�

=

dx

�

d�

�

�

: (2.10)

Thus, the partials f�

�

g do indeed represent a good basis for the ve
tor spa
e of dire
tional

derivatives, whi
h we 
an therefore safely identify with the tangent spa
e.

Of 
ourse, the ve
tor represented by

d

d�

is one we already know; it's the tangent ve
tor

to the 
urve with parameter �. Thus (2.10) 
an be thought of as a restatement of (1.24),

where we 
laimed the that 
omponents of the tangent ve
tor were simply dx

�

=d�. The only

di�eren
e is that we are working on an arbitrary manifold, and we have spe
i�ed our basis

ve
tors to be ê

(�)

= �

�

.

This parti
ular basis (ê

(�)

= �

�

) is known as a 
oordinate basis for T

p

; it is the

formalization of the notion of setting up the basis ve
tors to point along the 
oordinate

axes. There is no reason why we are limited to 
oordinate bases when we 
onsider tangent

ve
tors; it is sometimes more 
onvenient, for example, to use orthonormal bases of some

sort. However, the 
oordinate basis is very simple and natural, and we will use it almost

ex
lusively throughout the 
ourse.

One of the advantages of the rather abstra
t point of view we have taken toward ve
tors

is that the transformation law is immediate. Sin
e the basis ve
tors are ê

(�)

= �

�

, the basis

ve
tors in some new 
oordinate system x

�

0

are given by the 
hain rule (2.3) as

�

�

0

=

�x

�

�x

�

0

�

�

: (2.11)

We 
an get the transformation law for ve
tor 
omponents by the same te
hnique used in 
at

spa
e, demanding the the ve
tor V = V

�

�

�

be un
hanged by a 
hange of basis. We have

V

�

�

�

= V

�

0

�

�

0

= V

�

0

�x

�

�x

�

0

�

�

; (2.12)
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and hen
e (sin
e the matrix �x

�

0

=�x

�

is the inverse of the matrix �x

�

=�x

�

0

),

V

�

0

=

�x

�

0

�x

�

V

�

: (2.13)

Sin
e the basis ve
tors are usually not written expli
itly, the rule (2.13) for transforming


omponents is what we 
all the \ve
tor transformation law." We noti
e that it is 
om-

patible with the transformation of ve
tor 
omponents in spe
ial relativity under Lorentz

transformations, V

�

0

= �

�

0

�

V

�

, sin
e a Lorentz transformation is a spe
ial kind of 
oordi-

nate transformation, with x

�

0

= �

�

0

�

x

�

. But (2.13) is mu
h more general, as it en
ompasses

the behavior of ve
tors under arbitrary 
hanges of 
oordinates (and therefore bases), not just

linear transformations. As usual, we are trying to emphasize a somewhat subtle ontologi
al

distin
tion | tensor 
omponents do not 
hange when we 
hange 
oordinates, they 
hange

when we 
hange the basis in the tangent spa
e, but we have de
ided to use the 
oordinates

to de�ne our basis. Therefore a 
hange of 
oordinates indu
es a 
hange of basis:

ρ

2

ρ

1

ρ
2 ρ

1

x

x

µ

µ’

’

’

Having explored the world of ve
tors, we 
ontinue to retra
e the steps we took in 
at

spa
e, and now 
onsider dual ve
tors (one-forms). On
e again the 
otangent spa
e T

�

p

is the

set of linear maps ! : T

p

! R. The 
anoni
al example of a one-form is the gradient of a

fun
tion f , denoted df . Its a
tion on a ve
tor

d

d�

is exa
tly the dire
tional derivative of the

fun
tion:

df

 

d

d�

!

=

df

d�

: (2.14)

It's tempting to think, \why shouldn't the fun
tion f itself be 
onsidered the one-form, and

df=d� its a
tion?" The point is that a one-form, like a ve
tor, exists only at the point it is

de�ned, and does not depend on information at other points on M . If you know a fun
tion

in some neighborhood of a point you 
an take its derivative, but not just from knowing

its value at the point; the gradient, on the other hand, en
odes pre
isely the information
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ne
essary to take the dire
tional derivative along any 
urve through p, ful�lling its role as a

dual ve
tor.

Just as the partial derivatives along 
oordinate axes provide a natural basis for the

tangent spa
e, the gradients of the 
oordinate fun
tions x

�

provide a natural basis for the


otangent spa
e. Re
all that in 
at spa
e we 
onstru
ted a basis for T

�

p

by demanding that

^

�

(�)

(ê

(�)

) = Æ

�

�

. Continuing the same philosophy on an arbitrary manifold, we �nd that (2.14)

leads to

dx

�

(�

�

) =

�x

�

�x

�

= Æ

�

�

: (2.15)

Therefore the gradients fdx

�

g are an appropriate set of basis one-forms; an arbitrary one-

form is expanded into 
omponents as ! = !

�

dx

�

.

The transformation properties of basis dual ve
tors and 
omponents follow from what is

by now the usual pro
edure. We obtain, for basis one-forms,

dx

�

0

=

�x

�

0

�x

�

dx

�

; (2.16)

and for 
omponents,

!

�

0

=

�x

�

�x

�

0

!

�

: (2.17)

We will usually write the 
omponents !

�

when we speak about a one-form !.

The transformation law for general tensors follows this same pattern of repla
ing the

Lorentz transformation matrix used in 
at spa
e with a matrix representing more general


oordinate transformations. A (k; l) tensor T 
an be expanded

T = T

�

1

����

k

�

1

����

l

�

�

1


 � � � 
 �

�

k


 dx

�

1


 � � � 
 dx

�

l

; (2.18)

and under a 
oordinate transformation the 
omponents 
hange a

ording to

T

�

0

1

����

0

k

�

0

1

����

0

l

=

�x

�

0

1

�x

�

1

� � �

�x

�

0

k

�x

�

k

�x

�

1

�x

�

0

1

� � �

�x

�

l

�x

�

0

l

T

�

1

����

k

�

1

����

l

: (2.19)

This tensor transformation law is straightforward to remember, sin
e there really isn't any-

thing else it 
ould be, given the pla
ement of indi
es. However, it is often easier to transform

a tensor by taking the identity of basis ve
tors and one-forms as partial derivatives and gradi-

ents at fa
e value, and simply substituting in the 
oordinate transformation. As an example


onsider a symmetri
 (0; 2) tensor S on a 2-dimensional manifold, whose 
omponents in a


oordinate system (x

1

= x; x

2

= y) are given by

S

��

=

�

x 0

0 1

�

: (2.20)
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This 
an be written equivalently as

S = S

��

(dx

�


 dx

�

)

= x(dx)

2

+ (dy)

2

; (2.21)

where in the last line the tensor produ
t symbols are suppressed for brevity. Now 
onsider

new 
oordinates

x

0

= x

1=3

y

0

= e

x+y

: (2.22)

This leads dire
tly to

x = (x

0

)

3

y = ln(y

0

)� (x

0

)

3

dx = 3(x

0

)

2

dx

0

dy =

1

y

0

dy

0

� 3(x

0

)

2

dx

0

: (2.23)

We need only plug these expressions dire
tly into (2.21) to obtain (remembering that tensor

produ
ts don't 
ommute, so dx

0

dy

0

6= dy

0

dx

0

):

S = 9(x

0

)

4

[1 + (x

0

)

3

℄(dx

0

)

2

� 3

(x

0

)

2

y

0

(dx

0

dy

0

+ dy

0

dx

0

) +

1

(y

0

)

2

(dy

0

)

2

; (2.24)

or

S

�

0

�

0

=

0

�

9(x

0

)

4

[1 + (x

0

)

3

℄ �3

(x

0

)

2

y

0

�3

(x

0

)

2

y

0

1

(y

0

)

2

1

A

: (2.25)

Noti
e that it is still symmetri
. We did not use the transformation law (2.19) dire
tly, but

doing so would have yielded the same result, as you 
an 
he
k.

For the most part the various tensor operations we de�ned in 
at spa
e are unaltered

in a more general setting: 
ontra
tion, symmetrization, et
. There are three important

ex
eptions: partial derivatives, the metri
, and the Levi-Civita tensor. Let's look at the

partial derivative �rst.

The unfortunate fa
t is that the partial derivative of a tensor is not, in general, a new

tensor. The gradient, whi
h is the partial derivative of a s
alar, is an honest (0; 1) tensor, as

we have seen. But the partial derivative of higher-rank tensors is not tensorial, as we 
an see

by 
onsidering the partial derivative of a one-form, �

�

W

�

, and 
hanging to a new 
oordinate

system:

�

�x

�

0

W

�

0

=

�x

�

�x

�

0

�

�x

�

 

�x

�

�x

�

0

W

�

!

=

�x

�

�x

�

0

�x

�

�x

�

0

 

�

�x

�

W

�

!

+W

�

�x

�

�x

�

0

�

�x

�

�x

�

�x

�

0

: (2.26)
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The se
ond term in the last line should not be there if �

�

W

�

were to transform as a (0; 2)

tensor. As you 
an see, it arises be
ause the derivative of the transformation matrix does

not vanish, as it did for Lorentz transformations in 
at spa
e.

On the other hand, the exterior derivative operator d does form an antisymmetri
 (0; p+1)

tensor when a
ted on a p-form. For p = 1 we 
an see this from (2.26); the o�ending non-

tensorial term 
an be written

W

�

�x

�

�x

�

0

�

�x

�

�x

�

�x

�

0

= W

�

�

2

x

�

�x

�

0

�x

�

0

: (2.27)

This expression is symmetri
 in �

0

and �

0

, sin
e partial derivatives 
ommute. But the exterior

derivative is de�ned to be the antisymmetrized partial derivative, so this term vanishes

(the antisymmetri
 part of a symmetri
 expression is zero). We are then left with the


orre
t tensor transformation law; extension to arbitrary p is straightforward. So the exterior

derivative is a legitimate tensor operator; it is not, however, an adequate substitute for the

partial derivative, sin
e it is only de�ned on forms. In the next se
tion we will de�ne a


ovariant derivative, whi
h 
an be thought of as the extension of the partial derivative to

arbitrary manifolds.

The metri
 tensor is su
h an important obje
t in 
urved spa
e that it is given a new

symbol, g

��

(while �

��

is reserved spe
i�
ally for the Minkowski metri
). There are few

restri
tions on the 
omponents of g

��

, other than that it be a symmetri
 (0; 2) tensor. It is

usually taken to be non-degenerate, meaning that the determinant g = jg

��

j doesn't vanish.

This allows us to de�ne the inverse metri
 g

��

via

g

��

g

��

= Æ

�

�

: (2.28)

The symmetry of g

��

implies that g

��

is also symmetri
. Just as in spe
ial relativity, the

metri
 and its inverse may be used to raise and lower indi
es on tensors.

It will take several weeks to fully appre
iate the role of the metri
 in all of its glory, but

for purposes of inspiration we 
an list the various uses to whi
h g

��

will be put: (1) the

metri
 supplies a notion of \past" and \future"; (2) the metri
 allows the 
omputation of

path length and proper time; (3) the metri
 determines the \shortest distan
e" between two

points (and therefore the motion of test parti
les); (4) the metri
 repla
es the Newtonian

gravitational �eld �; (5) the metri
 provides a notion of lo
ally inertial frames and therefore

a sense of \no rotation"; (6) the metri
 determines 
ausality, by de�ning the speed of light

faster than whi
h no signal 
an travel; (7) the metri
 repla
es the traditional Eu
lidean

three-dimensional dot produ
t of Newtonian me
hani
s; and so on. Obviously these ideas

are not all 
ompletely independent, but we get some sense of the importan
e of this tensor.

In our dis
ussion of path lengths in spe
ial relativity we (somewhat handwavingly) in-

trodu
ed the line element as ds

2

= �

��

dx

�

dx

�

, whi
h was used to get the length of a path.
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Of 
ourse now that we know that dx

�

is really a basis dual ve
tor, it be
omes natural to use

the terms \metri
" and \line element" inter
hangeably, and write

ds

2

= g

��

dx

�

dx

�

: (2.29)

(To be perfe
tly 
onsistent we should write this as \g", and sometimes will, but more often

than not g is used for the determinant jg

��

j.) For example, we know that the Eu
lidean line

element in a three-dimensional spa
e with Cartesian 
oordinates is

ds

2

= (dx)

2

+ (dy)

2

+ (dz)

2

: (2.30)

We 
an now 
hange to any 
oordinate system we 
hoose. For example, in spheri
al 
oordi-

nates we have

x = r sin � 
os �

y = r sin � sin�

z = r 
os � ; (2.31)

whi
h leads dire
tly to

ds

2

= dr

2

+ r

2

d�

2

+ r

2

sin

2

� d�

2

: (2.32)

Obviously the 
omponents of the metri
 look di�erent than those in Cartesian 
oordinates,

but all of the properties of the spa
e remain unaltered.

Perhaps this is a good time to note that most referen
es are not suÆ
iently pi
ky to

distinguish between \dx", the informal notion of an in�nitesimal displa
ement, and \dx",

the rigorous notion of a basis one-form given by the gradient of a 
oordinate fun
tion. In

fa
t our notation \ds

2

" does not refer to the exterior derivative of anything, or the square of

anything; it's just 
onventional shorthand for the metri
 tensor. On the other hand, \(dx)

2

"

refers spe
i�
ally to the (0; 2) tensor dx
 dx.

A good example of a spa
e with 
urvature is the two-sphere, whi
h 
an be thought of as

the lo
us of points in R

3

at distan
e 1 from the origin. The metri
 in the (�; �) 
oordinate

system 
omes from setting r = 1 and dr = 0 in (2.32):

ds

2

= d�

2

+ sin

2

� d�

2

: (2.33)

This is 
ompletely 
onsistent with the interpretation of ds as an in�nitesimal length, as

illustrated in the �gure.

As we shall see, the metri
 tensor 
ontains all the information we need to des
ribe the


urvature of the manifold (at least in Riemannian geometry; we will a
tually indi
ate some-

what more general approa
hes). In Minkowski spa
e we 
an 
hoose 
oordinates in whi
h the


omponents of the metri
 are 
onstant; but it should be 
lear that the existen
e of 
urvature
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S

ds
θ

sin θ dφ

d

2

is more subtle than having the metri
 depend on the 
oordinates, sin
e in the example above

we showed how the metri
 in 
at Eu
lidean spa
e in spheri
al 
oordinates is a fun
tion of r

and �. Later, we shall see that 
onstan
y of the metri
 
omponents is suÆ
ient for a spa
e

to be 
at, and in fa
t there always exists a 
oordinate system on any 
at spa
e in whi
h

the metri
 is 
onstant. But we might not want to work in su
h a 
oordinate system, and we

might not even know how to �nd it; therefore we will want a more pre
ise 
hara
terization

of the 
urvature, whi
h will be introdu
ed down the road.

A useful 
hara
terization of the metri
 is obtained by putting g

��

into its 
anoni
al

form. In this form the metri
 
omponents be
ome

g

��

= diag (�1;�1; : : : ;�1;+1;+1; : : : ;+1; 0; 0; : : : ; 0) ; (2.34)

where \diag" means a diagonal matrix with the given elements. If n is the dimension of

the manifold, s is the number of +1's in the 
anoni
al form, and t is the number of �1's,

then s � t is the signature of the metri
 (the di�eren
e in the number of minus and plus

signs), and s+ t is the rank of the metri
 (the number of nonzero eigenvalues). If a metri


is 
ontinuous, the rank and signature of the metri
 tensor �eld are the same at every point,

and if the metri
 is nondegenerate the rank is equal to the dimension n. We will always deal

with 
ontinuous, nondegenerate metri
s. If all of the signs are positive (t = 0) the metri


is 
alled Eu
lidean or Riemannian (or just \positive de�nite"), while if there is a single

minus (t = 1) it is 
alled Lorentzian or pseudo-Riemannian, and any metri
 with some

+1's and some �1's is 
alled \inde�nite." (So the word \Eu
lidean" sometimes means that

the spa
e is 
at, and sometimes doesn't, but always means that the 
anoni
al form is stri
tly

positive; the terminology is unfortunate but standard.) The spa
etimes of interest in general

relativity have Lorentzian metri
s.

We haven't yet demonstrated that it is always possible to but the metri
 into 
anoni
al

form. In fa
t it is always possible to do so at some point p 2 M , but in general it will
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only be possible at that single point, not in any neighborhood of p. A
tually we 
an do

slightly better than this; it turns out that at any point p there exists a 
oordinate system in

whi
h g

��

takes its 
anoni
al form and the �rst derivatives �

�

g

��

all vanish (while the se
ond

derivatives �

�

�

�

g

��


annot be made to all vanish). Su
h 
oordinates are known as Riemann

normal 
oordinates, and the asso
iated basis ve
tors 
onstitute a lo
al Lorentz frame.

Noti
e that in Riemann normal 
oordinates (or RNC's) the metri
 at p looks like that of 
at

spa
e \to �rst order." This is the rigorous notion of the idea that \small enough regions of

spa
etime look like 
at (Minkowski) spa
e." (Also, there is no diÆ
ulty in simultaneously


onstru
ting sets of basis ve
tors at every point inM su
h that the metri
 takes its 
anoni
al

form; the problem is that in general this will not be a 
oordinate basis, and there will be no

way to make it into one.)

We won't 
onsider the detailed proof of this statement; it 
an be found in S
hutz, pp. 158-

160, where it goes by the name of the \lo
al 
atness theorem." (He also 
alls lo
al Lorentz

frames \momentarily 
omoving referen
e frames," or MCRF's.) It is useful to see a sket
h

of the proof, however, for the spe
i�
 
ase of a Lorentzian metri
 in four dimensions. The

idea is to 
onsider the transformation law for the metri


g

�

0

�

0

=

�x

�

�x

�

0

�x

�

�x

�

0

g

��

; (2.35)

and expand both sides in Taylor series in the sought-after 
oordinates x

�

0

. The expansion

of the old 
oordinates x

�

looks like

x

�

=

 

�x

�

�x

�

0

!

p

x

�

0

+

1

2

 

�

2

x

�

�x

�

0

1

�x

�

0

2

!

p

x

�

0

1

x

�

0

2

+

1

6

 

�

3

x

�

�x

�

0

1

�x

�

0

2

�x

�

0

3

!

p

x

�

0

1

x

�

0

2

x

�

0

3

+ � � � ; (2.36)

with the other expansions pro
eeding along the same lines. (For simpli
ity we have set

x

�

(p) = x

�

0

(p) = 0.) Then, using some extremely s
hemati
 notation, the expansion of

(2.35) to se
ond order is

(g

0

)

p

+ (�

0

g

0

)

p

x

0

+ (�

0

�

0

g

0

)

p

x

0

x

0

=

 

�x

�x

0

�x

�x

0

g

!

p

+

 

�x

�x

0

�

2

x

�x

0

�x

0

g +

�x

�x

0

�x

�x

0

�

0

g

!

p

x

0

+

 

�x

�x

0

�

3

x

�x

0

�x

0

�x

0

g +

�

2

x

�x

0

�x

0

�

2

x

�x

0

�x

0

g +

�x

�x

0

�

2

x

�x

0

�x

0

�

0

g +

�x

�x

0

�x

�x

0

�

0

�

0

g

!

p

x

0

x

0

:(2.37)

We 
an set terms of equal order in x

0

on ea
h side equal to ea
h other. Therefore, the


omponents g

�

0

�

0

(p), 10 numbers in all (to des
ribe a symmetri
 two-index tensor), are

determined by the matrix (�x

�

=�x

�

0

)

p

. This is a 4 � 4 matrix with no 
onstraints; thus,

16 numbers we are free to 
hoose. Clearly this is enough freedom to put the 10 numbers of

g

�

0

�

0

(p) into 
anoni
al form, at least as far as having enough degrees of freedom is 
on
erned.
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(In fa
t there are some limitations | if you go through the pro
edure 
arefully, you �nd

for example that you 
annot 
hange the signature and rank.) The six remaining degrees of

freedom 
an be interpreted as exa
tly the six parameters of the Lorentz group; we know that

these leave the 
anoni
al form un
hanged. At �rst order we have the derivatives �

�

0

g

�

0

�

0

(p),

four derivatives of ten 
omponents for a total of 40 numbers. But looking at the right hand

side of (2.37) we see that we now have the additional freedom to 
hoose (�

2

x

�

=�x

�

0

1

�x

�

0

2

)

p

. In

this set of numbers there are 10 independent 
hoi
es of the indi
es �

0

1

and �

0

2

(it's symmetri
,

sin
e partial derivatives 
ommute) and four 
hoi
es of �, for a total of 40 degrees of freedom.

This is pre
isely the amount of 
hoi
e we need to determine all of the �rst derivatives of the

metri
, whi
h we 
an therefore set to zero. At se
ond order, however, we are 
on
erned with

�

�

0

�

�

0

g

�

0

�

0

(p); this is symmetri
 in �

0

and �

0

as well as �

0

and �

0

, for a total of 10� 10 = 100

numbers. Our ability to make additional 
hoi
es is 
ontained in (�

3

x

�

=�x

�

0

1

�x

�

0

2

�x

�

0

3

)

p

.

This is symmetri
 in the three lower indi
es, whi
h gives 20 possibilities, times four for the

upper index gives us 80 degrees of freedom | 20 fewer than we require to set the se
ond

derivatives of the metri
 to zero. So in fa
t we 
annot make the se
ond derivatives vanish;

the deviation from 
atness must therefore be measured by the 20 
oordinate-independent

degrees of freedom representing the se
ond derivatives of the metri
 tensor �eld. We will

see later how this 
omes about, when we 
hara
terize 
urvature using the Riemann tensor,

whi
h will turn out to have 20 independent 
omponents.

The �nal 
hange we have to make to our tensor knowledge now that we have dropped

the assumption of 
at spa
e has to do with the Levi-Civita tensor, �

�

1

�

2

����

n

. Remember that

the 
at-spa
e version of this obje
t, whi
h we will now denote by ~�

�

1

�

2

����

n

, was de�ned as

~�

�

1

�

2

����

n

=

8

>

<

>

:

+1 if �

1

�

2

� � ��

n

is an even permutation of 01 � � � (n� 1) ;

�1 if �

1

�

2

� � � �

n

is an odd permutation of 01 � � � (n� 1) ;

0 otherwise :

(2.38)

We will now de�ne the Levi-Civita symbol to be exa
tly this ~�

�

1

�

2

����

n

| that is, an obje
t

with n indi
es whi
h has the 
omponents spe
i�ed above in any 
oordinate system. This is


alled a \symbol," of 
ourse, be
ause it is not a tensor; it is de�ned not to 
hange under


oordinate transformations. We 
an relate its behavior to that of an ordinary tensor by �rst

noting that, given some n� n matrixM

�

�

0

, the determinant jM j obeys

~�

�

0

1

�

0

2

����

0

n

jM j = ~�

�

1

�

2

����

n

M

�

1

�

0

1

M

�

2

�

0

2

� � �M

�

n

�

0

n

: (2.39)

This is just a true fa
t about the determinant whi
h you 
an �nd in a suÆ
iently enlightened

linear algebra book. If follows that, setting M

�

�

0

= �x

�

=�x

�

0

, we have

~�

�

0

1

�

0

2

����

0

n

=

�

�

�

�

�

�x

�

0

�x

�

�

�

�

�

�

~�

�

1

�

2

����

n

�x

�

1

�x

�

0

1

�x

�

2

�x

�

0

2

� � �

�x

�

n

�x

�

0

n

: (2.40)
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This is 
lose to the tensor transformation law, ex
ept for the determinant out front. Obje
ts

whi
h transform in this way are known as tensor densities. Another example is given by

the determinant of the metri
, g = jg

��

j. It's easy to 
he
k (by taking the determinant of

both sides of (2.35)) that under a 
oordinate transformation we get

g(x

�

0

) =

�

�

�

�

�

�x

�

0

�x

�

�

�

�

�

�

�2

g(x

�

) : (2.41)

Therefore g is also not a tensor; it transforms in a way similar to the Levi-Civita symbol,

ex
ept that the Ja
obian is raised to the �2 power. The power to whi
h the Ja
obian is

raised is known as the weight of the tensor density; the Levi-Civita symbol is a density of

weight 1, while g is a (s
alar) density of weight �2.

However, we don't like tensor densities, we like tensors. There is a simple way to 
onvert

a density into an honest tensor | multiply by jgj

w=2

, where w is the weight of the density

(the absolute value signs are there be
ause g < 0 for Lorentz metri
s). The result will

transform a

ording to the tensor transformation law. Therefore, for example, we 
an de�ne

the Levi-Civita tensor as

�

�

1

�

2

����

n

=

q

jgj ~�

�

1

�

2

����

n

: (2.42)

It is this tensor whi
h is used in the de�nition of the Hodge dual, (1.87), whi
h is otherwise

un
hanged when generalized to arbitrary manifolds. Sin
e this is a real tensor, we 
an raise

indi
es, et
. Sometimes people de�ne a version of the Levi-Civita symbol with upper indi
es,

~�

�

1

�

2

����

n

, whose 
omponents are numeri
ally equal to the symbol with lower indi
es. This

turns out to be a density of weight �1, and is related to the tensor with upper indi
es by

�

�

1

�

2

����

n

= sgn(g)

1

q

jgj

~�

�

1

�

2

����

n

: (2.43)

As an aside, we should 
ome 
lean and admit that, even with the fa
tor of

q

jgj, the

Levi-Civita tensor is in some sense not a true tensor, be
ause on some manifolds it 
annot

be globally de�ned. Those on whi
h it 
an be de�ned are 
alled orientable, and we will

deal ex
lusively with orientable manifolds in this 
ourse. An example of a non-orientable

manifold is the M�obius strip; see S
hutz's Geometri
al Methods in Mathemati
al Physi
s

(or a similar text) for a dis
ussion.

One �nal appearan
e of tensor densities is in integration on manifolds. We will not do this

subje
t justi
e, but at least a 
asual glan
e is ne
essary. You have probably been exposed

to the fa
t that in ordinary 
al
ulus on R

n

the volume element d

n

x pi
ks up a fa
tor of the

Ja
obian under 
hange of 
oordinates:

d

n

x

0

=

�

�

�

�

�

�x

�

0

�x

�

�

�

�

�

�

d

n

x : (2.44)



2 MANIFOLDS 53

There is a
tually a beautiful explanation of this formula from the point of view of di�erential

forms, whi
h arises from the following fa
t: on an n-dimensional manifold, the integrand is

properly understood as an n-form. The naive volume element d

n

x is itself a density rather

than an n-form, but there is no diÆ
ulty in using it to 
onstru
t a real n-form. To see how

this works, we should make the identi�
ation

d

n

x$ dx

0

^ � � � ^ dx

n�1

: (2.45)

The expression on the right hand side 
an be misleading, be
ause it looks like a tensor (an

n-form, a
tually) but is really a density. Certainly if we have two fun
tions f and g on M ,

then df and dg are one-forms, and df ^ dg is a two-form. But we would like to interpret

the right hand side of (2.45) as a 
oordinate-dependent obje
t whi
h, in the x

�


oordinate

system, a
ts like dx

0

^ � � � ^ dx

n�1

. This sounds tri
ky, but in fa
t it's just an ambiguity of

notation, and in pra
ti
e we will just use the shorthand notation \d

n

x".

To justify this song and dan
e, let's see how (2.45) 
hanges under 
oordinate transfor-

mations. First noti
e that the de�nition of the wedge produ
t allows us to write

dx

0

^ � � � ^ dx

n�1

=

1

n!

~�

�

1

����

n

dx

�

1

^ � � � ^ dx

�

n

; (2.46)

sin
e both the wedge produ
t and the Levi-Civita symbol are 
ompletely antisymmetri
. Un-

der a 
oordinate transformation ~�

�

1

����

n

stays the same while the one-forms 
hange a

ording

to (2.16), leading to

~�

�

1

����

n

dx

�

1

^ � � � ^ dx

�

n

= ~�

�

1

����

n

�x

�

1

�x

�

0

1

� � �

�x

�

n

�x

�

0

n

dx

�

0

1

^ � � � ^ dx

�

0

n

=

�

�

�

�

�

�x

�

�x

�

0

�

�

�

�

�

~�

�

0

1

����

0

n

dx

�

0

1

^ � � � ^ dx

�

0

n

: (2.47)

Multiplying by the Ja
obian on both sides re
overs (2.44).

It is 
lear that the naive volume element d

n

x transforms as a density, not a tensor, but

it is straightforward to 
onstru
t an invariant volume element by multiplying by

q

jgj:

q

jg

0

jdx

0

0

^ � � � ^ dx

(n�1)

0

=

q

jgjdx

0

^ � � � ^ dx

n�1

; (2.48)

whi
h is of 
ourse just (n!)

�1

�

�

1

����

n

dx

�

1

^ � � � ^ dx

�

n

. In the interest of simpli
ity we will

usually write the volume element as

q

jgj d

n

x, rather than as the expli
it wedge produ
t

q

jgjdx

0

^ � � � ^ dx

n�1

; it will be enough to keep in mind that it's supposed to be an n-form.

As a �nal aside to �nish this se
tion, let's 
onsider one of the most elegant and powerful

theorems of di�erential geometry: Stokes's theorem. This theorem is the generalization of

the fundamental theorem of 
al
ulus,

R

a

b

dx = a � b. Imagine that we have an n-manifold
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M with boundary �M , and an (n� 1)-form ! on M . (We haven't dis
ussed manifolds with

boundaries, but the idea is obvious; M 
ould for instan
e be the interior of an (n � 1)-

dimensional 
losed surfa
e �M .) Then d! is an n-form, whi
h 
an be integrated over M ,

while ! itself 
an be integrated over �M . Stokes's theorem is then

Z

M

d! =

Z

�M

! : (2.49)

You 
an 
onvin
e yourself that di�erent spe
ial 
ases of this theorem in
lude not only the

fundamental theorem of 
al
ulus, but also the theorems of Green, Gauss, and Stokes, familiar

from ve
tor 
al
ulus in three dimensions.



De
ember 1997 Le
ture Notes on General Relativity Sean M. Carroll

3 Curvature

In our dis
ussion of manifolds, it be
ame 
lear that there were various notions we 
ould talk

about as soon as the manifold was de�ned; we 
ould de�ne fun
tions, take their derivatives,


onsider parameterized paths, set up tensors, and so on. Other 
on
epts, su
h as the volume

of a region or the length of a path, required some additional pie
e of stru
ture, namely the

introdu
tion of a metri
. It would be natural to think of the notion of \
urvature", whi
h we

have already used informally, is something that depends on the metri
. A
tually this turns

out to be not quite true, or at least in
omplete. In fa
t there is one additional stru
ture

we need to introdu
e | a \
onne
tion" | whi
h is 
hara
terized by the 
urvature. We will

show how the existen
e of a metri
 implies a 
ertain 
onne
tion, whose 
urvature may be

thought of as that of the metri
.

The 
onne
tion be
omes ne
essary when we attempt to address the problem of the partial

derivative not being a good tensor operator. What we would like is a 
ovariant derivative;

that is, an operator whi
h redu
es to the partial derivative in 
at spa
e with Cartesian


oordinates, but transforms as a tensor on an arbitrary manifold. It is 
onventional to spend

a 
ertain amount of time motivating the introdu
tion of a 
ovariant derivative, but in fa
t

the need is obvious; equations su
h as �

�

T

��

= 0 are going to have to be generalized to


urved spa
e somehow. So let's agree that a 
ovariant derivative would be a good thing to

have, and go about setting it up.

In 
at spa
e in Cartesian 
oordinates, the partial derivative operator �

�

is a map from

(k; l) tensor �elds to (k; l+1) tensor �elds, whi
h a
ts linearly on its arguments and obeys the

Leibniz rule on tensor produ
ts. All of this 
ontinues to be true in the more general situation

we would now like to 
onsider, but the map provided by the partial derivative depends on the


oordinate system used. We would therefore like to de�ne a 
ovariant derivative operator

r to perform the fun
tions of the partial derivative, but in a way independent of 
oordinates.

We therefore require that r be a map from (k; l) tensor �elds to (k; l+1) tensor �elds whi
h

has these two properties:

1. linearity: r(T + S) = rT +rS ;

2. Leibniz (produ
t) rule: r(T 
 S) = (rT )
 S + T 
 (rS) .

If r is going to obey the Leibniz rule, it 
an always be written as the partial derivative

plus some linear transformation. That is, to take the 
ovariant derivative we �rst take the

partial derivative, and then apply a 
orre
tion to make the result 
ovariant. (We aren't going

to prove this reasonable-sounding statement, but Wald goes into detail if you are interested.)

55
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Let's 
onsider what this means for the 
ovariant derivative of a ve
tor V

�

. It means that, for

ea
h dire
tion �, the 
ovariant derivative r

�

will be given by the partial derivative �

�

plus

a 
orre
tion spe
i�ed by a matrix (�

�

)

�

�

(an n� n matrix, where n is the dimensionality of

the manifold, for ea
h �). In fa
t the parentheses are usually dropped and we write these

matri
es, known as the 
onne
tion 
oeÆ
ients, with haphazard index pla
ement as �

�

��

.

We therefore have

r

�

V

�

= �

�

V

�

+ �

�

��

V

�

: (3.1)

Noti
e that in the se
ond term the index originally on V has moved to the �, and a new index

is summed over. If this is the expression for the 
ovariant derivative of a ve
tor in terms of

the partial derivative, we should be able to determine the transformation properties of �

�

��

by demanding that the left hand side be a (1; 1) tensor. That is, we want the transformation

law to be

r

�

0

V

�

0

=

�x

�

�x

�

0

�x

�

0

�x

�

r

�

V

�

: (3.2)

Let's look at the left side �rst; we 
an expand it using (3.1) and then transform the parts

that we understand:

r

�

0

V

�

0

= �

�

0

V

�

0

+ �

�

0

�

0

�

0

V

�

0

=

�x

�

�x

�

0

�x

�

0

�x

�

�

�

V

�

+

�x

�

�x

�

0

V

�

�

�x

�

�x

�

0

�x

�

+ �

�

0

�

0

�

0

�x

�

0

�x

�

V

�

: (3.3)

The right side, meanwhile, 
an likewise be expanded:

�x

�

�x

�

0

�x

�

0

�x

�

r

�

V

�

=

�x

�

�x

�

0

�x

�

0

�x

�

�

�

V

�

+

�x

�

�x

�

0

�x

�

0

�x

�

�

�

��

V

�

: (3.4)

These last two expressions are to be equated; the �rst terms in ea
h are identi
al and therefore


an
el, so we have

�

�

0

�

0

�

0

�x

�

0

�x

�

V

�

+

�x

�

�x

�

0

V

�

�

�x

�

�x

�

0

�x

�

=

�x

�

�x

�

0

�x

�

0

�x

�

�

�

��

V

�

; (3.5)

where we have 
hanged a dummy index from � to �. This equation must be true for any

ve
tor V

�

, so we 
an eliminate that on both sides. Then the 
onne
tion 
oeÆ
ients in the

primed 
oordinates may be isolated by multiplying by �x

�

=�x

�

0

. The result is

�

�

0

�

0

�

0

=

�x

�

�x

�

0

�x

�

�x

�

0

�x

�

0

�x

�

�

�

��

�

�x

�

�x

�

0

�x

�

�x

�

0

�

2

x

�

0

�x

�

�x

�

: (3.6)

This is not, of 
ourse, the tensor transformation law; the se
ond term on the right spoils it.

That's okay, be
ause the 
onne
tion 
oeÆ
ients are not the 
omponents of a tensor. They

are purposefully 
onstru
ted to be non-tensorial, but in su
h a way that the 
ombination

(3.1) transforms as a tensor | the extra terms in the transformation of the partials and
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the �'s exa
tly 
an
el. This is why we are not so 
areful about index pla
ement on the


onne
tion 
oeÆ
ients; they are not a tensor, and therefore you should try not to raise and

lower their indi
es.

What about the 
ovariant derivatives of other sorts of tensors? By similar reasoning to

that used for ve
tors, the 
ovariant derivative of a one-form 
an also be expressed as a partial

derivative plus some linear transformation. But there is no reason as yet that the matri
es

representing this transformation should be related to the 
oeÆ
ients �

�

��

. In general we


ould write something like

r

�

!

�

= �

�

!

�

+

e

�

�

��

!

�

; (3.7)

where

e

�

�

��

is a new set of matri
es for ea
h �. (Pay attention to where all of the various

indi
es go.) It is straightforward to derive that the transformation properties of

e

� must be

the same as those of �, but otherwise no relationship has been established. To do so, we

need to introdu
e two new properties that we would like our 
ovariant derivative to have (in

addition to the two above):

3. 
ommutes with 
ontra
tions: r

�

(T

�

��

) = (rT )

�

�

��

,

4. redu
es to the partial derivative on s
alars: r

�

� = �

�

� .

There is no way to \derive" these properties; we are simply demanding that they be true as

part of the de�nition of a 
ovariant derivative.

Let's see what these new properties imply. Given some one-form �eld !

�

and ve
tor �eld

V

�

, we 
an take the 
ovariant derivative of the s
alar de�ned by !

�

V

�

to get

r

�

(!

�

V

�

) = (r

�

!

�

)V

�

+ !

�

(r

�

V

�

)

= (�

�

!

�

)V

�

+

e

�

�

��

!

�

V

�

+ !

�

(�

�

V

�

) + !

�

�

�

��

V

�

: (3.8)

But sin
e !

�

V

�

is a s
alar, this must also be given by the partial derivative:

r

�

(!

�

V

�

) = �

�

(!

�

V

�

)

= (�

�

!

�

)V

�

+ !

�

(�

�

V

�

) : (3.9)

This 
an only be true if the terms in (3.8) with 
onne
tion 
oeÆ
ients 
an
el ea
h other;

that is, rearranging dummy indi
es, we must have

0 =

e

�

�

��

!

�

V

�

+ �

�

��

!

�

V

�

: (3.10)

But both !

�

and V

�

are 
ompletely arbitrary, so

e

�

�

��

= ��

�

��

: (3.11)
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The two extra 
onditions we have imposed therefore allow us to express the 
ovariant deriva-

tive of a one-form using the same 
onne
tion 
oeÆ
ients as were used for the ve
tor, but

now with a minus sign (and indi
es mat
hed up somewhat di�erently):

r

�

!

�

= �

�

!

�

� �

�

��

!

�

: (3.12)

It should 
ome as no surprise that the 
onne
tion 
oeÆ
ients en
ode all of the information

ne
essary to take the 
ovariant derivative of a tensor of arbitrary rank. The formula is quite

straightforward; for ea
h upper index you introdu
e a term with a single +�, and for ea
h

lower index a term with a single ��:

r

�

T

�

1

�

2

����

k

�

1

�

2

����

l

= �

�

T

�

1

�

2

����

k

�

1

�

2

����

l

+�

�

1

��

T

��

2

����

k

�

1

�

2

����

l

+ �

�

2

��

T

�

1

�����

k

�

1

�

2

����

l

+ � � �

��

�

��

1

T

�

1

�

2

����

k

��

2

����

l

� �

�

��

2

T

�

1

�

2

����

k

�

1

�����

l

� � � � : (3.13)

This is the general expression for the 
ovariant derivative. You 
an 
he
k it yourself; it


omes from the set of axioms we have established, and the usual requirements that tensors

of various sorts be 
oordinate-independent entities. Sometimes an alternative notation is

used; just as 
ommas are used for partial derivatives, semi
olons are used for 
ovariant ones:

r

�

T

�

1

�

2

����

k

�

1

�

2

����

l

� T

�

1

�

2

����

k

�

1

�

2

����

l

;�

: (3.14)

On
e again, I'm not a big fan of this notation.

To de�ne a 
ovariant derivative, then, we need to put a \
onne
tion" on our manifold,

whi
h is spe
i�ed in some 
oordinate system by a set of 
oeÆ
ients �

�

��

(n

3

= 64 independent


omponents in n = 4 dimensions) whi
h transform a

ording to (3.6). (The name \
onne
-

tion" 
omes from the fa
t that it is used to transport ve
tors from one tangent spa
e to

another, as we will soon see.) There are evidently a large number of 
onne
tions we 
ould

de�ne on any manifold, and ea
h of them implies a distin
t notion of 
ovariant di�erentia-

tion. In general relativity this freedom is not a big 
on
ern, be
ause it turns out that every

metri
 de�nes a unique 
onne
tion, whi
h is the one used in GR. Let's see how that works.

The �rst thing to noti
e is that the di�eren
e of two 
onne
tions is a (1; 2) tensor. If

we have two sets of 
onne
tion 
oeÆ
ients, �

�

��

and

b

�

�

��

, their di�eren
e S

��

�

= �

�

��

�

b

�

�

��

(noti
e index pla
ement) transforms as

S

�

0

�

0

�

0

= �

�

0

�

0

�

0

�

b

�

�

0

�

0

�

0

=

�x

�

�x

�

0

�x

�

�x

�

0

�x

�

0

�x

�

�

�

��

�

�x

�

�x

�

0

�x

�

�x

�

0

�

2

x

�

0

�x

�

�x

�

�

�x

�

�x

�

0

�x

�

�x

�

0

�x

�

0

�x

�

b

�

�

��

+

�x

�

�x

�

0

�x

�

�x

�

0

�

2

x

�

0

�x

�

�x

�

=

�x

�

�x

�

0

�x

�

�x

�

0

�x

�

0

�x

�

(�

�

��

�

b

�

�

��

)

=

�x

�

�x

�

0

�x

�

�x

�

0

�x

�

0

�x

�

S

��

�

: (3.15)
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This is just the tensor transormation law, so S

��

�

is indeed a tensor. This implies that any

set of 
onne
tions 
an be expressed as some �du
ial 
onne
tion plus a tensorial 
orre
tion.

Next noti
e that, given a 
onne
tion spe
i�ed by �

�

��

, we 
an immediately form another


onne
tion simply by permuting the lower indi
es. That is, the set of 
oeÆ
ients �

�

��

will

also transform a

ording to (3.6) (sin
e the partial derivatives appearing in the last term


an be 
ommuted), so they determine a distin
t 
onne
tion. There is thus a tensor we 
an

asso
iate with any given 
onne
tion, known as the torsion tensor, de�ned by

T

��

�

= �

�

��

� �

�

��

= 2�

�

[��℄

: (3.16)

It is 
lear that the torsion is antisymmetri
 its lower indi
es, and a 
onne
tion whi
h is

symmetri
 in its lower indi
es is known as \torsion-free."

We 
an now de�ne a unique 
onne
tion on a manifold with a metri
 g

��

by introdu
ing

two additional properties:

� torsion-free: �

�

��

= �

�

(��)

.

� metri
 
ompatibility: r

�

g

��

= 0.

A 
onne
tion is metri
 
ompatible if the 
ovariant derivative of the metri
 with respe
t to

that 
onne
tion is everywhere zero. This implies a 
ouple of ni
e properties. First, it's easy

to show that the inverse metri
 also has zero 
ovariant derivative,

r

�

g

��

= 0 : (3.17)

Se
ond, a metri
-
ompatible 
ovariant derivative 
ommutes with raising and lowering of

indi
es. Thus, for some ve
tor �eld V

�

,

g

��

r

�

V

�

= r

�

(g

��

V

�

) = r

�

V

�

: (3.18)

With non-metri
-
ompatible 
onne
tions one must be very 
areful about index pla
ement

when taking a 
ovariant derivative.

Our 
laim is therefore that there is exa
tly one torsion-free 
onne
tion on a given manifold

whi
h is 
ompatible with some given metri
 on that manifold. We do not want to make these

two requirements part of the de�nition of a 
ovariant derivative; they simply single out one

of the many possible ones.

We 
an demonstrate both existen
e and uniqueness by deriving a manifestly unique

expression for the 
onne
tion 
oeÆ
ients in terms of the metri
. To a

omplish this, we

expand out the equation of metri
 
ompatibility for three di�erent permutations of the

indi
es:

r

�

g

��

= �

�

g

��

� �

�

��

g

��

� �

�

��

g

��

= 0
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r

�

g

��

= �

�

g

��

� �

�

��

g

��

� �

�

��

g

��

= 0

r

�

g

��

= �

�

g

��

� �

�

��

g

��

� �

�

��

g

��

= 0 : (3.19)

We subtra
t the se
ond and third of these from the �rst, and use the symmetry of the


onne
tion to obtain

�

�

g

��

� �

�

g

��

� �

�

g

��

+ 2�

�

��

g

��

= 0 : (3.20)

It is straightforward to solve this for the 
onne
tion by multiplying by g

��

. The result is

�

�

��

=

1

2

g

��

(�

�

g

��

+ �

�

g

��

� �

�

g

��

) : (3.21)

This is one of the most important formulas in this subje
t; 
ommit it to memory. Of 
ourse,

we have only proved that if a metri
-
ompatible and torsion-free 
onne
tion exists, it must

be of the form (3.21); you 
an 
he
k for yourself (for those of you without enough tedious


omputation in your lives) that the right hand side of (3.21) transforms like a 
onne
tion.

This 
onne
tion we have derived from the metri
 is the one on whi
h 
onventional general

relativity is based (although we will keep an open mind for a while longer). It is known

by di�erent names: sometimes the Christo�el 
onne
tion, sometimes the Levi-Civita


onne
tion, sometimes the Riemannian 
onne
tion. The asso
iated 
onne
tion 
oeÆ
ients

are sometimes 
alled Christo�el symbols and written as

n

�

��

o

; we will sometimes 
all

them Christo�el symbols, but we won't use the funny notation. The study of manifolds with

metri
s and their asso
iated 
onne
tions is 
alled \Riemannian geometry." As far as I 
an

tell the study of more general 
onne
tions 
an be tra
ed ba
k to Cartan, but I've never heard

it 
alled \Cartanian geometry."

Before putting our 
ovariant derivatives to work, we should mention some mis
ellaneous

properties. First, let's emphasize again that the 
onne
tion does not have to be 
onstru
ted

from the metri
. In ordinary 
at spa
e there is an impli
it 
onne
tion we use all the time

| the Christo�el 
onne
tion 
onstru
ted from the 
at metri
. But we 
ould, if we 
hose,

use a di�erent 
onne
tion, while keeping the metri
 
at. Also noti
e that the 
oeÆ
ients

of the Christo�el 
onne
tion in 
at spa
e will vanish in Cartesian 
oordinates, but not in


urvilinear 
oordinate systems. Consider for example the plane in polar 
oordinates, with

metri


ds

2

= dr

2

+ r

2

d�

2

: (3.22)

The nonzero 
omponents of the inverse metri
 are readily found to be g

rr

= 1 and g

��

= r

�2

.

(Noti
e that we use r and � as indi
es in an obvious notation.) We 
an 
ompute a typi
al


onne
tion 
oeÆ
ient:

�

r

rr

=

1

2

g

r�

(�

r

g

r�

+ �

r

g

�r

� �

�

g

rr

)

=

1

2

g

rr

(�

r

g

rr

+ �

r

g

rr

� �

r

g

rr

)
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+

1

2

g

r�

(�

r

g

r�

+ �

r

g

�r

� �

�

g

rr

)

=

1

2

(1)(0 + 0� 0) +

1

2

(0)(0 + 0� 0)

= 0 : (3.23)

Sadly, it vanishes. But not all of them do:

�

r

��

=

1

2

g

r�

(�

�

g

��

+ �

�

g

��

� �

�

g

��

)

=

1

2

g

rr

(�

�

g

�r

+ �

�

g

r�

� �

r

g

��

)

=

1

2

(1)(0 + 0 � 2r)

= �r : (3.24)

Continuing to turn the 
rank, we eventually �nd

�

r

�r

= �

r

r�

= 0

�

�

rr

= 0

�

�

r�

= �

�

�r

=

1

r

�

�

��

= 0 : (3.25)

The existen
e of nonvanishing 
onne
tion 
oeÆ
ients in 
urvilinear 
oordinate systems is

the ultimate 
ause of the formulas for the divergen
e and so on that you �nd in books on

ele
tri
ity and magnetism.

Contrariwise, even in a 
urved spa
e it is still possible to make the Christo�el symbols

vanish at any one point. This is just be
ause, as we saw in the last se
tion, we 
an always

make the �rst derivative of the metri
 vanish at a point; so by (3.21) the 
onne
tion 
oeÆ-


ients derived from this metri
 will also vanish. Of 
ourse this 
an only be established at a

point, not in some neighborhood of the point.

Another useful property is that the formula for the divergen
e of a ve
tor (with respe
t

to the Christo�el 
onne
tion) has a simpli�ed form. The 
ovariant divergen
e of V

�

is given

by

r

�

V

�

= �

�

V

�

+ �

�

��

V

�

: (3.26)

It's easy to show (see pp. 106-108 of Weinberg) that the Christo�el 
onne
tion satis�es

�

�

��

=

1

q

jgj

�

�

q

jgj ; (3.27)

and we therefore obtain

r

�

V

�

=

1

q

jgj

�

�

(

q

jgjV

�

) : (3.28)



3 CURVATURE 62

There are also formulas for the divergen
es of higher-rank tensors, but they are generally

not su
h a great simpli�
ation.

As the last fa
toid we should mention about 
onne
tions, let us emphasize (on
e more)

that the exterior derivative is a well-de�ned tensor in the absen
e of any 
onne
tion. The

reason this needs to be emphasized is that, if you happen to be using a symmetri
 (torsion-

free) 
onne
tion, the exterior derivative (de�ned to be the antisymmetrized partial derivative)

happens to be equal to the antisymmetrized 
ovariant derivative:

r

[�

!

�℄

= �

[�

!

�℄

� �

�

[��℄

!

�

= �

[�

!

�℄

: (3.29)

This has led some misfortunate souls to fret about the \ambiguity" of the exterior derivative

in spa
es with torsion, where the above simpli�
ation does not o

ur. There is no ambiguity:

the exterior derivative does not involve the 
onne
tion, no matter what 
onne
tion you

happen to be using, and therefore the torsion never enters the formula for the exterior

derivative of anything.

Before moving on, let's review the pro
ess by whi
h we have been adding stru
tures to

our mathemati
al 
onstru
ts. We started with the basi
 notion of a set, whi
h you were

presumed to know (informally, if not rigorously). We introdu
ed the 
on
ept of open subsets

of our set; this is equivalent to introdu
ing a topology, and promoted the set to a topologi
al

spa
e. Then by demanding that ea
h open set look like a region of R

n

(with n the same for

ea
h set) and that the 
oordinate 
harts be smoothly sewn together, the topologi
al spa
e

be
ame a manifold. A manifold is simultaneously a very 
exible and powerful stru
ture,

and 
omes equipped naturally with a tangent bundle, tensor bundles of various ranks, the

ability to take exterior derivatives, and so forth. We then pro
eeded to put a metri
 on

the manifold, resulting in a manifold with metri
 (or sometimes \Riemannian manifold").

Independently of the metri
 we found we 
ould introdu
e a 
onne
tion, allowing us to take


ovariant derivatives. On
e we have a metri
, however, there is automati
ally a unique

torsion-free metri
-
ompatible 
onne
tion. (In prin
iple there is nothing to stop us from

introdu
ing more than one 
onne
tion, or more than one metri
, on any given manifold.)

The situation is thus as portrayed in the diagram on the next page.
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introduce a topology

(open sets)

(automatically

has a

connection)

space
topological

manifold

manifold
with

connection

Riemannian 
manifold

locally like      

introduce a connection

introduce a metric

R
n

set

Having set up the ma
hinery of 
onne
tions, the �rst thing we will do is dis
uss parallel

transport. Re
all that in 
at spa
e it was unne
essary to be very 
areful about the fa
t

that ve
tors were elements of tangent spa
es de�ned at individual points; it is a
tually very

natural to 
ompare ve
tors at di�erent points (where by \
ompare" we mean add, subtra
t,

take the dot produ
t, et
.). The reason why it is natural is be
ause it makes sense, in 
at

spa
e, to \move a ve
tor from one point to another while keeping it 
onstant." Then on
e

we get the ve
tor from one point to another we 
an do the usual operations allowed in a

ve
tor spa
e.

q

p

keep vector
constant

The 
on
ept of moving a ve
tor along a path, keeping 
onstant all the while, is known

as parallel transport. As we shall see, parallel transport is de�ned whenever we have a
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onne
tion; the intuitive manipulation of ve
tors in 
at spa
e makes impli
it use of the

Christo�el 
onne
tion on this spa
e. The 
ru
ial di�eren
e between 
at and 
urved spa
es is

that, in a 
urved spa
e, the result of parallel transporting a ve
tor from one point to another

will depend on the path taken between the points. Without yet assembling the 
omplete

me
hanism of parallel transport, we 
an use our intuition about the two-sphere to see that

this is the 
ase. Start with a ve
tor on the equator, pointing along a line of 
onstant

longitude. Parallel transport it up to the north pole along a line of longitude in the obvious

way. Then take the original ve
tor, parallel transport it along the equator by an angle �, and

then move it up to the north pole as before. It is 
lear that the ve
tor, parallel transported

along two paths, arrived at the same destination with two di�erent values (rotated by �).

It therefore appears as if there is no natural way to uniquely move a ve
tor from one

tangent spa
e to another; we 
an always parallel transport it, but the result depends on the

path, and there is no natural 
hoi
e of whi
h path to take. Unlike some of the problems we

have en
ountered, there is no solution to this one | we simply must learn to live with the

fa
t that two ve
tors 
an only be 
ompared in a natural way if they are elements of the same

tangent spa
e. For example, two parti
les passing by ea
h other have a well-de�ned relative

velo
ity (whi
h 
annot be greater than the speed of light). But two parti
les at di�erent

points on a 
urved manifold do not have any well-de�ned notion of relative velo
ity | the


on
ept simply makes no sense. Of 
ourse, in 
ertain spe
ial situations it is still useful to talk

as if it did make sense, but it is ne
essary to understand that o

asional usefulness is not a

substitute for rigorous de�nition. In 
osmology, for example, the light from distant galaxies

is redshifted with respe
t to the frequen
ies we would observe from a nearby stationary

sour
e. Sin
e this phenomenon bears su
h a 
lose resemblan
e to the 
onventional Doppler

e�e
t due to relative motion, it is very tempting to say that the galaxies are \re
eding away

from us" at a speed de�ned by their redshift. At a rigorous level this is nonsense, what

Wittgenstein would 
all a \grammati
al mistake" | the galaxies are not re
eding, sin
e the

notion of their velo
ity with respe
t to us is not well-de�ned. What is a
tually happening

is that the metri
 of spa
etime between us and the galaxies has 
hanged (the universe has
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expanded) along the path of the photon from here to there, leading to an in
rease in the

wavelength of the light. As an example of how you 
an go wrong, naive appli
ation of the

Doppler formula to the redshift of galaxies implies that some of them are re
eding faster than

light, in apparent 
ontradi
tion with relativity. The resolution of this apparent paradox is

simply that the very notion of their re
ession should not be taken literally.

Enough about what we 
annot do; let's see what we 
an. Parallel transport is supposed to

be the 
urved-spa
e generalization of the 
on
ept of \keeping the ve
tor 
onstant" as we move

it along a path; similarly for a tensor of arbitrary rank. Given a 
urve x

�

(�), the requirement

of 
onstan
y of a tensor T along this 
urve in 
at spa
e is simply

dT

d�

=

dx

�

d�

�T

�x

�

= 0. We

therefore de�ne the 
ovariant derivative along the path to be given by an operator

D

d�

=

dx

�

d�

r

�

: (3.30)

We then de�ne parallel transport of the tensor T along the path x

�

(�) to be the require-

ment that, along the path,

�

D

d�

T

�

�

1

�

2

����

k

�

1

�

2

����

l

�

dx

�

d�

r

�

T

�

1

�

2

����

k

�

1

�

2

����

l

= 0 : (3.31)

This is a well-de�ned tensor equation, sin
e both the tangent ve
tor dx

�

=d� and the 
ovariant

derivative rT are tensors. This is known as the equation of parallel transport. For a

ve
tor it takes the form

d

d�

V

�

+ �

�

��

dx

�

d�

V

�

= 0 : (3.32)

We 
an look at the parallel transport equation as a �rst-order di�erential equation de�ning

an initial-value problem: given a tensor at some point along the path, there will be a unique


ontinuation of the tensor to other points along the path su
h that the 
ontinuation solves

(3.31). We say that su
h a tensor is parallel transported.

The notion of parallel transport is obviously dependent on the 
onne
tion, and di�erent


onne
tions lead to di�erent answers. If the 
onne
tion is metri
-
ompatible, the metri
 is

always parallel transported with respe
t to it:

D

d�

g

��

=

dx

�

d�

r

�

g

��

= 0 : (3.33)

It follows that the inner produ
t of two parallel-transported ve
tors is preserved. That is, if

V

�

and W

�

are parallel-transported along a 
urve x

�

(�), we have

D

d�

(g

��

V

�

W

�

) =

�

D

d�

g

��

�

V

�

W

�

+ g

��

�

D

d�

V

�

�

W

�

+ g

��

V

�

�

D

d�

W

�

�

= 0 : (3.34)

This means that parallel transport with respe
t to a metri
-
ompatible 
onne
tion preserves

the norm of ve
tors, the sense of orthogonality, and so on.



3 CURVATURE 66

One thing they don't usually tell you in GR books is that you 
an write down an expli
it

and general solution to the parallel transport equation, although it's somewhat formal. First

noti
e that for some path 
 : �! x

�

(�), solving the parallel transport equation for a ve
tor

V

�

amounts to �nding a matrix P

�

�

(�; �

0

) whi
h relates the ve
tor at its initial value V

�

(�

0

)

to its value somewhere later down the path:

V

�

(�) = P

�

�

(�; �

0

)V

�

(�

0

) : (3.35)

Of 
ourse the matrix P

�

�

(�; �

0

), known as the parallel propagator, depends on the path


 (although it's hard to �nd a notation whi
h indi
ates this without making 
 look like an

index). If we de�ne

A

�

�

(�) = ��

�

��

dx

�

d�

; (3.36)

where the quantities on the right hand side are evaluated at x

�

(�), then the parallel transport

equation be
omes

d

d�

V

�

= A

�

�

V

�

: (3.37)

Sin
e the parallel propagator must work for any ve
tor, substituting (3.35) into (3.37) shows

that P

�

�

(�; �

0

) also obeys this equation:

d

d�

P

�

�

(�; �

0

) = A

�

�

(�)P

�

�

(�; �

0

) : (3.38)

To solve this equation, �rst integrate both sides:

P

�

�

(�; �

0

) = Æ

�

�

+

Z

�

�

0

A

�

�

(�)P

�

�

(�; �

0

) d� : (3.39)

The Krone
ker delta, it is easy to see, provides the 
orre
t normalization for � = �

0

.

We 
an solve (3.39) by iteration, taking the right hand side and plugging it into itself

repeatedly, giving

P

�

�

(�; �

0

) = Æ

�

�

+

Z

�

�

0

A

�

�

(�) d� +

Z

�

�

0

Z

�

�

0

A

�

�

(�)A

�

�

(�

0

) d�

0

d� + � � � : (3.40)

The nth term in this series is an integral over an n-dimensional right triangle, or n-simplex.
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Z

�

�

0
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1
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�

0

Z

�
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�

0

A(�

2

)A(�

1

) d�

1

d�

2

Z

�

�

0

Z

�

3

�

0

Z

�

2

�

0

A(�

3

)A(�

2

)A(�

1

) d

3

�

η

η

η

1

3

2

η

η

2

1

η
1

It would simplify things if we 
ould 
onsider su
h an integral to be over an n-
ube

instead of an n-simplex; is there some way to do this? There are n! su
h simpli
es in ea
h


ube, so we would have to multiply by 1=n! to 
ompensate for this extra volume. But we

also want to get the integrand right; using matrix notation, the integrand at nth order

is A(�

n

)A(�

n�1

) � � �A(�

1

), but with the spe
ial property that �

n

� �

n�1

� � � � � �

1

. We

therefore de�ne the path-ordering symbol, P, to ensure that this 
ondition holds. In

other words, the expression

P[A(�

n

)A(�

n�1

) � � �A(�

1

)℄ (3.41)

stands for the produ
t of the n matri
es A(�

i

), ordered in su
h a way that the largest value

of �

i

is on the left, and ea
h subsequent value of �

i

is less than or equal to the previous one.

We then 
an express the nth-order term in (3.40) as

Z

�

�

0

Z

�

n

�

0

� � �

Z

�

2

�

0

A(�

n

)A(�

n�1

) � � �A(�

1

) d

n

�

=

1

n!

Z

�

�

0

Z

�

�

0

� � �

Z

�

�

0

P[A(�

n

)A(�

n�1

) � � �A(�

1

)℄ d

n

� : (3.42)

This expression 
ontains no substantive statement about the matri
es A(�

i

); it is just nota-

tion. But we 
an now write (3.40) in matrix form as

P (�; �

0

) = 1+

1

X

n=1

1

n!

Z

�

�

0

P[A(�

n

)A(�

n�1

) � � �A(�

1

)℄ d

n

� : (3.43)

This formula is just the series expression for an exponential; we therefore say that the parallel

propagator is given by the path-ordered exponential

P (�; �

0

) = P exp

 

Z

�

�

0

A(�) d�

!

; (3.44)



3 CURVATURE 68

where on
e again this is just notation; the path-ordered exponential is de�ned to be the right

hand side of (3.43). We 
an write it more expli
itly as

P

�

�

(�; �

0

) = P exp

 

�

Z

�

�

0

�

�

��

dx

�

d�

d�

!

: (3.45)

It's ni
e to have an expli
it formula, even if it is rather abstra
t. The same kind of ex-

pression appears in quantum �eld theory as \Dyson's Formula," where it arises be
ause the

S
hr�odinger equation for the time-evolution operator has the same form as (3.38).

As an aside, an espe
ially interesting example of the parallel propagator o

urs when the

path is a loop, starting and ending at the same point. Then if the 
onne
tion is metri
-


ompatible, the resulting matrix will just be a Lorentz transformation on the tangent spa
e

at the point. This transformation is known as the \holonomy" of the loop. If you know

the holonomy of every possible loop, that turns out to be equivalent to knowing the metri
.

This fa
t has let Ashtekar and his 
ollaborators to examine general relativity in the \loop

representation," where the fundamental variables are holonomies rather than the expli
it

metri
. They have made some progress towards quantizing the theory in this approa
h,

although the jury is still out about how mu
h further progress 
an be made.

With parallel transport understood, the next logi
al step is to dis
uss geodesi
s. A

geodesi
 is the 
urved-spa
e generalization of the notion of a \straight line" in Eu
lidean

spa
e. We all know what a straight line is: it's the path of shortest distan
e between

two points. But there is an equally good de�nition | a straight line is a path whi
h

parallel transports its own tangent ve
tor. On a manifold with an arbitrary (not ne
essarily

Christo�el) 
onne
tion, these two 
on
epts do not quite 
oin
ide, and we should dis
uss

them separately.

We'll take the se
ond de�nition �rst, sin
e it is 
omputationally mu
h more straight-

forward. The tangent ve
tor to a path x

�

(�) is dx

�

=d�. The 
ondition that it be parallel

transported is thus

D

d�

dx

�

d�

= 0 ; (3.46)

or alternatively

d

2

x

�

d�

2

+ �

�

��

dx

�

d�

dx

�

d�

= 0 : (3.47)

This is the geodesi
 equation, another one whi
h you should memorize. We 
an easily

see that it reprodu
es the usual notion of straight lines if the 
onne
tion 
oeÆ
ients are the

Christo�el symbols in Eu
lidean spa
e; in that 
ase we 
an 
hoose Cartesian 
oordinates in

whi
h �

�

��

= 0, and the geodesi
 equation is just d

2

x

�

=d�

2

= 0, whi
h is the equation for a

straight line.

That was embarrassingly simple; let's turn to the more nontrivial 
ase of the shortest

distan
e de�nition. As we know, there are various subtleties involved in the de�nition of
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distan
e in a Lorentzian spa
etime; for null paths the distan
e is zero, for timelike paths

it's more 
onvenient to use the proper time, et
. So in the name of simpli
ity let's do the


al
ulation just for a timelike path | the resulting equation will turn out to be good for any

path, so we are not losing any generality. We therefore 
onsider the proper time fun
tional,

� =

Z

 

�g

��

dx

�

d�

dx

�

d�

!

1=2

d� ; (3.48)

where the integral is over the path. To sear
h for shortest-distan
e paths, we will do the

usual 
al
ulus of variations treatment to seek extrema of this fun
tional. (In fa
t they will

turn out to be 
urves of maximum proper time.)

We want to 
onsider the 
hange in the proper time under in�nitesimal variations of the

path,

x

�

! x

�

+ Æx

�

g

��

! g

��

+ Æx

�

�

�

g

��

: (3.49)

(The se
ond line 
omes from Taylor expansion in 
urved spa
etime, whi
h as you 
an see

uses the partial derivative, not the 
ovariant derivative.) Plugging this into (3.48), we get

� + Æ� =

Z

 

�g

��

dx

�

d�

dx

�

d�

� �

�

g

��

dx

�

d�

dx

�

d�

Æx

�

� 2g

��

dx

�

d�

d(Æx

�

)

d�

!

1=2

d�

=

Z
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dx

�

d�

dx

�

d�

!

1=2

2
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1 +
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��

dx

�

d�

dx

�

d�

!

�1

�

 

��

�

g

��

dx

�

d�

dx

�

d�

Æx

�

� 2g

��

dx

�

d�

d(Æx

�

)

d�

!#

1=2

d� : (3.50)

Sin
e Æx

�

is assumed to be small, we 
an expand the square root of the expression in square

bra
kets to �nd

Æ� =

Z

 

�g

��

dx

�

d�

dx

�

d�

!

�1=2

 

�

1

2

�

�

g

��

dx

�

d�

dx

�

d�

Æx

�

� g

��

dx

�

d�

d(Æx

�

)

d�

!

d� : (3.51)

It is helpful at this point to 
hange the parameterization of our 
urve from �, whi
h was

arbitrary, to the proper time � itself, using

d� =

 

�g

��

dx

�

d�

dx

�

d�

!

�1=2

d� : (3.52)

We plug this into (3.51) (note: we plug it in for every appearan
e of d�) to obtain

Æ� =

Z

"

�

1

2

�

�

g

��

dx

�

d�

dx

�

d�

Æx

�
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��
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d�
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=

Z

"

�

1

2

�

�

g

��

dx

�

d�

dx

�

d�

+

d

d�

 

g

��

dx

�

d�

!#

Æx

�

d� ; (3.53)

where in the last line we have integrated by parts, avoiding possible boundary 
ontributions

by demanding that the variation Æx

�

vanish at the endpoints of the path. Sin
e we are

sear
hing for stationary points, we want Æ� to vanish for any variation; this implies

�

1

2

�

�

g

��

dx

�

d�

dx

�

d�

+

dx

�

d�

dx

�

d�

�

�

g

��

+ g

��

d

2

x

�

d�

2

= 0 ; (3.54)

where we have used dg

��

=d� = (dx

�

=d� )�

�

g

��

. Some shu�ing of dummy indi
es reveals

g

��

d

2

x

�

d�

2

+

1

2

(��

�

g

��

+ �

�

g

��

+ �

�

g

��

)

dx

�

d�

dx

�

d�

= 0 ; (3.55)

and multiplying by the inverse metri
 �nally leads to

d

2

x

�

d�

2

+

1

2

g

��

(�

�

g

��

+ �

�

g

��

� �

�

g

��

)

dx

�

d�

dx

�

d�

= 0 : (3.56)

We see that this is pre
isely the geodesi
 equation (3.32), but with the spe
i�
 
hoi
e of

Christo�el 
onne
tion (3.21). Thus, on a manifold with metri
, extremals of the length fun
-

tional are 
urves whi
h parallel transport their tangent ve
tor with respe
t to the Christo�el


onne
tion asso
iated with that metri
. It doesn't matter if there is any other 
onne
tion

de�ned on the same manifold. Of 
ourse, in GR the Christo�el 
onne
tion is the only one

whi
h is used, so the two notions are the same.

The primary usefulness of geodesi
s in general relativity is that they are the paths fol-

lowed by una

elerated parti
les. In fa
t, the geodesi
 equation 
an be thought of as the

generalization of Newton's law f = ma for the 
ase f = 0. It is also possible to introdu
e

for
es by adding terms to the right hand side; in fa
t, looking ba
k to the expression (1.103)

for the Lorentz for
e in spe
ial relativity, it is tempting to guess that the equation of motion

for a parti
le of mass m and 
harge q in general relativity should be

d

2

x

�

d�

2

+ �

�

��

dx

�

d�

dx

�

d�

=

q

m

F

�

�

dx

�

d�

: (3.57)

We will talk about this more later, but in fa
t your guess would be 
orre
t.

Having boldly derived these expressions, we should say some more 
areful words about

the parameterization of a geodesi
 path. When we presented the geodesi
 equation as the

requirement that the tangent ve
tor be parallel transported, (3.47), we parameterized our

path with some parameter �, whereas when we found the formula (3.56) for the extremal of

the spa
etime interval we wound up with a very spe
i�
 parameterization, the proper time.

Of 
ourse from the form of (3.56) it is 
lear that a transformation

� ! � = a� + b ; (3.58)
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for some 
onstants a and b, leaves the equation invariant. Any parameter related to the

proper time in this way is 
alled an aÆne parameter, and is just as good as the proper

time for parameterizing a geodesi
. What was hidden in our derivation of (3.47) was that

the demand that the tangent ve
tor be parallel transported a
tually 
onstrains the parameter-

ization of the 
urve, spe
i�
ally to one related to the proper time by (3.58). In other words,

if you start at some point and with some initial dire
tion, and then 
onstru
t a 
urve by

beginning to walk in that dire
tion and keeping your tangent ve
tor parallel transported,

you will not only de�ne a path in the manifold but also (up to linear transformations) de�ne

the parameter along the path.

Of 
ourse, there is nothing to stop you from using any other parameterization you like,

but then (3.47) will not be satis�ed. More generally you will satisfy an equation of the form

d

2

x

�

d�

2

+ �

�

��

dx

�

d�

dx

�

d�

= f(�)

dx

�

d�

; (3.59)

for some parameter � and some fun
tion f(�). Conversely, if (3.59) is satis�ed along a 
urve

you 
an always �nd an aÆne parameter �(�) for whi
h the geodesi
 equation (3.47) will be

satis�ed.

An important property of geodesi
s in a spa
etime with Lorentzian metri
 is that the


hara
ter (timelike/null/spa
elike) of the geodesi
 (relative to a metri
-
ompatible 
onne
-

tion) never 
hanges. This is simply be
ause parallel transport preserves inner produ
ts, and

the 
hara
ter is determined by the inner produ
t of the tangent ve
tor with itself. This

is why we were 
onsistent to 
onsider purely timelike paths when we derived (3.56); for

spa
elike paths we would have derived the same equation, sin
e the only di�eren
e is an

overall minus sign in the �nal answer. There are also null geodesi
s, whi
h satisfy the same

equation, ex
ept that the proper time 
annot be used as a parameter (some set of allowed

parameters will exist, related to ea
h other by linear transformations). You 
an derive this

fa
t either from the simple requirement that the tangent ve
tor be parallel transported, or

by extending the variation of (3.48) to in
lude all non-spa
elike paths.

Let's now explain the earlier remark that timelike geodesi
s are maxima of the proper

time. The reason we know this is true is that, given any timelike 
urve (geodesi
 or not), we


an approximate it to arbitrary a

ura
y by a null 
urve. To do this all we have to do is to


onsider \jagged" null 
urves whi
h follow the timelike one:
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null

timelike

As we in
rease the number of sharp 
orners, the null 
urve 
omes 
loser and 
loser to the

timelike 
urve while still having zero path length. Timelike geodesi
s 
annot therefore be


urves of minimum proper time, sin
e they are always in�nitesimally 
lose to 
urves of zero

proper time; in fa
t they maximize the proper time. (This is how you 
an remember whi
h

twin in the twin paradox ages more | the one who stays home is basi
ally on a geodesi
,

and therefore experien
es more proper time.) Of 
ourse even this is being a little 
avalier;

a
tually every time we say \maximize" or \minimize" we should add the modi�er \lo
ally."

It is often the 
ase that between two points on a manifold there is more than one geodesi
.

For instan
e, on S

2

we 
an draw a great 
ir
le through any two points, and imagine travelling

between them either the short way or the long way around. One of these is obviously longer

than the other, although both are stationary points of the length fun
tional.

The �nal fa
t about geodesi
s before we move on to 
urvature proper is their use in

mapping the tangent spa
e at a point p to a lo
al neighborhood of p. To do this we noti
e

that any geodesi
 x

�

(�) whi
h passes through p 
an be spe
i�ed by its behavior at p; let us


hoose the parameter value to be �(p) = 0, and the tangent ve
tor at p to be

dx

�

d�

(� = 0) = k

�

; (3.60)

for k

�

some ve
tor at p (some element of T

p

). Then there will be a unique point on the

manifoldM whi
h lies on this geodesi
 where the parameter has the value � = 1. We de�ne

the exponential map at p, exp

p

: T

p

!M , via

exp

p

(k

�

) = x

�

(� = 1) ; (3.61)

where x

�

(�) solves the geodesi
 equation subje
t to (3.60). For some set of tangent ve
tors

k

�

near the zero ve
tor, this map will be well-de�ned, and in fa
t invertible. Thus in the
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M

x  (  )

k

T

p

µ

p

λ

λ=1

ν

neighborhood of p given by the range of the map on this set of tangent ve
tors, the the

tangent ve
tors themselves de�ne a 
oordinate system on the manifold. In this 
oordinate

system, any geodesi
 through p is expressed trivially as

x

�

(�) = �k

�

; (3.62)

for some appropriate ve
tor k

�

.

We won't go into detail about the properties of the exponential map, sin
e in fa
t we

won't be using it mu
h, but it's important to emphasize that the range of the map is not

ne
essarily the whole manifold, and the domain is not ne
essarily the whole tangent spa
e.

The range 
an fail to be all of M simply be
ause there 
an be two points whi
h are not


onne
ted by any geodesi
. (In a Eu
lidean signature metri
 this is impossible, but not in

a Lorentzian spa
etime.) The domain 
an fail to be all of T

p

be
ause a geodesi
 may run

into a singularity, whi
h we think of as \the edge of the manifold." Manifolds whi
h have

su
h singularities are known as geodesi
ally in
omplete. This is not merely a problem

for 
areful mathemati
ians; in fa
t the \singularity theorems" of Hawking and Penrose state

that, for reasonable matter 
ontent (no negative energies), spa
etimes in general relativity

are almost guaranteed to be geodesi
ally in
omplete. As examples, the two most useful

spa
etimes in GR | the S
hwarzs
hild solution des
ribing bla
k holes and the Friedmann-

Robertson-Walker solutions des
ribing homogeneous, isotropi
 
osmologies | both feature

important singularities.

Having set up the ma
hinery of parallel transport and 
ovariant derivatives, we are at last

prepared to dis
uss 
urvature proper. The 
urvature is quanti�ed by the Riemann tensor,

whi
h is derived from the 
onne
tion. The idea behind this measure of 
urvature is that we

know what we mean by \
atness" of a 
onne
tion | the 
onventional (and usually impli
it)

Christo�el 
onne
tion asso
iated with a Eu
lidean or Minkowskian metri
 has a number of

properties whi
h 
an be thought of as di�erent manifestations of 
atness. These in
lude the

fa
t that parallel transport around a 
losed loop leaves a ve
tor un
hanged, that 
ovariant

derivatives of tensors 
ommute, and that initially parallel geodesi
s remain parallel. As we
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shall see, the Riemann tensor arises when we study how any of these properties are altered

in more general 
ontexts.

We have already argued, using the two-sphere as an example, that parallel transport

of a ve
tor around a 
losed loop in a 
urved spa
e will lead to a transformation of the

ve
tor. The resulting transformation depends on the total 
urvature en
losed by the loop;

it would be more useful to have a lo
al des
ription of the 
urvature at ea
h point, whi
h is

what the Riemann tensor is supposed to provide. One 
onventional way to introdu
e the

Riemann tensor, therefore, is to 
onsider parallel transport around an in�nitesimal loop. We

are not going to do that here, but take a more dire
t route. (Most of the presentations in

the literature are either sloppy, or 
orre
t but very diÆ
ult to follow.) Nevertheless, even

without working through the details, it is possible to see what form the answer should take.

Imagine that we parallel transport a ve
tor V

�

around a 
losed loop de�ned by two ve
tors

A

�

and B

�

:

(0, 0)

B

(  a, 0)

(  a,   b)

(0,   b)δ

ν

A
µ

B
ν

δ

δ
A

µ

δ

The (in�nitesimal) lengths of the sides of the loop are Æa and Æb, respe
tively. Now, we know

the a
tion of parallel transport is independent of 
oordinates, so there should be some tensor

whi
h tells us how the ve
tor 
hanges when it 
omes ba
k to its starting point; it will be

a linear transformation on a ve
tor, and therefore involve one upper and one lower index.

But it will also depend on the two ve
tors A and B whi
h de�ne the loop; therefore there

should be two additional lower indi
es to 
ontra
t with A

�

and B

�

. Furthermore, the tensor

should be antisymmetri
 in these two indi
es, sin
e inter
hanging the ve
tors 
orresponds

to traversing the loop in the opposite dire
tion, and should give the inverse of the original

answer. (This is 
onsistent with the fa
t that the transformation should vanish if A and B

are the same ve
tor.) We therefore expe
t that the expression for the 
hange ÆV

�

experien
ed

by this ve
tor when parallel transported around the loop should be of the form

ÆV

�

= (Æa)(Æb)A

�

B

�

R

�

���

V

�

; (3.63)

where R

�

���

is a (1; 3) tensor known as theRiemann tensor (or simply \
urvature tensor").
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It is antisymmetri
 in the last two indi
es:

R

�

���

= �R

�

���

: (3.64)

(Of 
ourse, if (3.63) is taken as a de�nition of the Riemann tensor, there is a 
onvention that

needs to be 
hosen for the ordering of the indi
es. There is no agreement at all on what this


onvention should be, so be 
areful.)

Knowing what we do about parallel transport, we 
ould very 
arefully perform the ne
-

essary manipulations to see what happens to the ve
tor under this operation, and the result

would be a formula for the 
urvature tensor in terms of the 
onne
tion 
oeÆ
ients. It is mu
h

qui
ker, however, to 
onsider a related operation, the 
ommutator of two 
ovariant deriva-

tives. The relationship between this and parallel transport around a loop should be evident;

the 
ovariant derivative of a tensor in a 
ertain dire
tion measures how mu
h the tensor


hanges relative to what it would have been if it had been parallel transported (sin
e the


ovariant derivative of a tensor in a dire
tion along whi
h it is parallel transported is zero).

The 
ommutator of two 
ovariant derivatives, then, measures the di�eren
e between parallel

transporting the tensor �rst one way and then the other, versus the opposite ordering.

ν

µ

∆
∆

∆

µ

∆

ν

The a
tual 
omputation is very straightforward. Considering a ve
tor �eld V

�

, we take

[r

�

;r

�

℄V

�

= r

�

r

�

V

�

�r

�

r

�

V

�

= �

�

(r

�

V

�

)� �

�

��

r

�

V

�

+ �

�

��

r

�

V

�

� (�$ �)

= �

�

�

�

V

�

+ (�

�

�

�

��

)V

�

+ �

�

��

�

�

V

�

� �

�

��

�

�

V

�

� �

�

��

�

�

��

V

�

+�

�

��

�

�

V

�

+ �

�

��

�

�

��

V

�

� (�$ �)

= (�

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

)V

�

� 2�

�

[��℄

r

�

V

�

: (3.65)

In the last step we have relabeled some dummy indi
es and eliminated some terms that


an
el when antisymmetrized. We re
ognize that the last term is simply the torsion tensor,

and that the left hand side is manifestly a tensor; therefore the expression in parentheses

must be a tensor itself. We write

[r

�

;r

�

℄V

�

= R

�

���

V

�

� T

��

�

r

�

V

�

; (3.66)
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where the Riemann tensor is identi�ed as

R

�

���

= �

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

: (3.67)

There are a number of things to noti
e about the derivation of this expression:

� Of 
ourse we have not demonstrated that (3.67) is a
tually the same tensor that ap-

peared in (3.63), but in fa
t it's true (see Wald for a believable if tortuous demonstra-

tion).

� It is perhaps surprising that the 
ommutator [r

�

;r

�

℄, whi
h appears to be a di�erential

operator, has an a
tion on ve
tor �elds whi
h (in the absen
e of torsion, at any rate)

is a simple multipli
ative transformation. The Riemann tensor measures that part of

the 
ommutator of 
ovariant derivatives whi
h is proportional to the ve
tor �eld, while

the torsion tensor measures the part whi
h is proportional to the 
ovariant derivative

of the ve
tor �eld; the se
ond derivative doesn't enter at all.

� Noti
e that the expression (3.67) is 
onstru
ted from non-tensorial elements; you 
an


he
k that the transformation laws all work out to make this parti
ular 
ombination a

legitimate tensor.

� The antisymmetry of R

�

���

in its last two indi
es is immediate from this formula and

its derivation.

� We 
onstru
ted the 
urvature tensor 
ompletely from the 
onne
tion (no mention of

the metri
 was made). We were suÆ
iently 
areful that the above expression is true

for any 
onne
tion, whether or not it is metri
 
ompatible or torsion free.

� Using what are by now our usual methods, the a
tion of [r

�

;r

�

℄ 
an be 
omputed on

a tensor of arbitrary rank. The answer is

[r

�

;r

�

℄X

�

1

����

k

�

1

����

l

= � T

��

�

r

�

X

�

1

����

k

�

1

����

l

+R

�

1

���

X

��

2

����

k

�

1

����

l

+R

�

2

���

X

�

1

�����

k

�

1

����

l

+ � � �

�R

�

�

1

��

X

�

1

����

k

��

2

����

l

�R

�

�

2

��

X

�

1

����

k

�

1

�����

l

� � � � :(3.68)

A useful notion is that of the 
ommutator of two ve
tor �elds X and Y , whi
h is a third

ve
tor �eld with 
omponents

[X;Y ℄

�

= X

�

�

�

Y

�

� Y

�

�

�

X

�

: (3.69)

Both the torsion tensor and the Riemann tensor, thought of as multilinearmaps, have elegant

expressions in terms of the 
ommutator. Thinking of the torsion as a map from two ve
tor

�elds to a third ve
tor �eld, we have

T (X;Y ) = r

X

Y �r

Y

X � [X;Y ℄ ; (3.70)
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and thinking of the Riemann tensor as a map from three ve
tor �elds to a fourth one, we

have

R(X;Y )Z = r

X

r

Y

Z �r

Y

r

X

Z �r

[X;Y ℄

Z : (3.71)

In these expressions, the notation r

X

refers to the 
ovariant derivative along the ve
tor �eld

X; in 
omponents, r

X

= X

�

r

�

. Note that the two ve
tors X and Y in (3.71) 
orrespond

to the two antisymmetri
 indi
es in the 
omponent form of the Riemann tensor. The last

term in (3.71), involving the 
ommutator [X;Y ℄, vanishes when X and Y are taken to be

the 
oordinate basis ve
tor �elds (sin
e [�

�

; �

�

℄ = 0), whi
h is why this term did not arise

when we originally took the 
ommutator of two 
ovariant derivatives. We will not use this

notation extensively, but you might see it in the literature, so you should be able to de
ode

it.

Having de�ned the 
urvature tensor as something whi
h 
hara
terizes the 
onne
tion, let

us now admit that in GR we are most 
on
erned with the Christo�el 
onne
tion. In this


ase the 
onne
tion is derived from the metri
, and the asso
iated 
urvature may be thought

of as that of the metri
 itself. This identi�
ation allows us to �nally make sense of our

informal notion that spa
es for whi
h the metri
 looks Eu
lidean or Minkowskian are 
at.

In fa
t it works both ways: if the 
omponents of the metri
 are 
onstant in some 
oordinate

system, the Riemann tensor will vanish, while if the Riemann tensor vanishes we 
an always


onstru
t a 
oordinate system in whi
h the metri
 
omponents are 
onstant.

The �rst of these is easy to show. If we are in some 
oordinate system su
h that �

�

g

��

= 0

(everywhere, not just at a point), then �

�

��

= 0 and �

�

�

�

��

= 0; thus R

�

���

= 0 by (3.67).

But this is a tensor equation, and if it is true in one 
oordinate system it must be true

in any 
oordinate system. Therefore, the statement that the Riemann tensor vanishes is a

ne
essary 
ondition for it to be possible to �nd 
oordinates in whi
h the 
omponents of g

��

are 
onstant everywhere.

It is also a suÆ
ient 
ondition, although we have to work harder to show it. Start by


hoosing Riemann normal 
oordinates at some point p, so that g

��

= �

��

at p. (Here we

are using �

��

in a generalized sense, as a matrix with either +1 or �1 for ea
h diagonal

element and zeroes elsewhere. The a
tual arrangement of the +1's and �1's depends on the


anoni
al form of the metri
, but is irrelevant for the present argument.) Denote the basis

ve
tors at p by ê

(�)

, with 
omponents ê

�

(�)

. Then by 
onstru
tion we have

g

��

ê

�

(�)

ê

�

(�)

(p) = �

��

: (3.72)

Now let us parallel transport the entire set of basis ve
tors from p to another point q; the

vanishing of the Riemann tensor ensures that the result will be independent of the path taken

between p and q. Sin
e parallel transport with respe
t to a metri
 
ompatible 
onne
tion

preserves inner produ
ts, we must have

g

��

ê

�

(�)

ê

�

(�)

(q) = �

��

: (3.73)
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We therefore have spe
i�ed a set of ve
tor �elds whi
h everywhere de�ne a basis in whi
h

the metri
 
omponents are 
onstant. This is 
ompletely unimpressive; it 
an be done on any

manifold, regardless of what the 
urvature is. What we would like to show is that this is

a 
oordinate basis (whi
h 
an only be true if the 
urvature vanishes). We know that if the

ê

(�)

's are a 
oordinate basis, their 
ommutator will vanish:

[ê

(�)

; ê

(�)

℄ = 0 : (3.74)

What we would really like is the 
onverse: that if the 
ommutator vanishes we 
an �nd


oordinates y

�

su
h that ê

(�)

=

�

�y

�

. In fa
t this is a true result, known as Frobenius's

Theorem. It's something of a mess to prove, involving a good deal more mathemati
al

apparatus than we have bothered to set up. Let's just take it for granted (skepti
s 
an


onsult S
hutz's Geometri
al Methods book). Thus, we would like to demonstrate (3.74) for

the ve
tor �elds we have set up. Let's use the expression (3.70) for the torsion:

[ê

(�)

; ê

(�)

℄ = r

ê

(�)

ê

(�)

�r

ê

(�)

ê

(�)

� T (ê

(�)

; ê

(�)

) : (3.75)

The torsion vanishes by hypothesis. The 
ovariant derivatives will also vanish, given the

method by whi
h we 
onstru
ted our ve
tor �elds; they were made by parallel transporting

along arbitrary paths. If the �elds are parallel transported along arbitrary paths, they are


ertainly parallel transported along the ve
tors ê

(�)

, and therefore their 
ovariant derivatives

in the dire
tion of these ve
tors will vanish. Thus (3.70) implies that the 
ommutator

vanishes, and therefore that we 
an �nd a 
oordinate system y

�

for whi
h these ve
tor �elds

are the partial derivatives. In this 
oordinate system the metri
 will have 
omponents �

��

,

as desired.

The Riemann tensor, with four indi
es, naively has n

4

independent 
omponents in an

n-dimensional spa
e. In fa
t the antisymmetry property (3.64) means that there are only

n(n�1)=2 independent values these last two indi
es 
an take on, leaving us with n

3

(n�1)=2

independent 
omponents. When we 
onsider the Christo�el 
onne
tion, however, there are a

number of other symmetries that redu
e the independent 
omponents further. Let's 
onsider

these now.

The simplest way to derive these additional symmetries is to examine the Riemann tensor

with all lower indi
es,

R

����

= g

��

R

�

���

: (3.76)

Let us further 
onsider the 
omponents of this tensor in Riemann normal 
oordinates es-

tablished at a point p. Then the Christo�el symbols themselves will vanish, although their

derivatives will not. We therefore have

R

����

= g

��

(�

�

�

�

��

� �

�

�

�

��

)
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=

1

2

g

��

g

��

(�

�

�

�

g

��

+ �

�

�

�

g

��

� �

�

�

�

g

��

� �

�

�

�

g

��

� �

�

�

�

g

��

+ �

�

�

�

g

��

)

=

1

2

(�

�

�

�

g

��

� �

�

�

�

g

��

� �

�

�

�

g

��

+ �

�

�

�

g

��

) : (3.77)

In the se
ond line we have used �

�

g

��

= 0 in RNC's, and in the third line the fa
t that

partials 
ommute. From this expression we 
an noti
e immediately two properties of R

����

;

it is antisymmetri
 in its �rst two indi
es,

R

����

= �R

����

; (3.78)

and it is invariant under inter
hange of the �rst pair of indi
es with the se
ond:

R

����

= R

����

: (3.79)

With a little more work, whi
h we leave to your imagination, we 
an see that the sum of


y
li
 permutations of the last three indi
es vanishes:

R

����

+R

����

+R

����

= 0 : (3.80)

This last property is equivalent to the vanishing of the antisymmetri
 part of the last three

indi
es:

R

�[��� ℄

= 0 : (3.81)

All of these properties have been derived in a spe
ial 
oordinate system, but they are all

tensor equations; therefore they will be true in any 
oordinates. Not all of them are inde-

pendent; with some e�ort, you 
an show that (3.64), (3.78) and (3.81) together imply (3.79).

The logi
al interdependen
e of the equations is usually less important than the simple fa
t

that they are true.

Given these relationships between the di�erent 
omponents of the Riemann tensor, how

many independent quantities remain? Let's begin with the fa
ts that R

����

is antisymmetri


in the �rst two indi
es, antisymmetri
 in the last two indi
es, and symmetri
 under inter-


hange of these two pairs. This means that we 
an think of it as a symmetri
 matrixR

[��℄[��℄

,

where the pairs �� and �� are thought of as individual indi
es. An m�m symmetri
 ma-

trix has m(m + 1)=2 independent 
omponents, while an n � n antisymmetri
 matrix has

n(n� 1)=2 independent 
omponents. We therefore have

1

2

�

1

2

n(n � 1)

� �

1

2

n(n � 1) + 1

�

=

1

8

(n

4

� 2n

3

+ 3n

2

� 2n) (3.82)

independent 
omponents. We still have to deal with the additional symmetry (3.81). An

immediate 
onsequen
e of (3.81) is that the totally antisymmetri
 part of the Riemann tensor

vanishes,

R

[���� ℄

= 0 : (3.83)
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In fa
t, this equation plus the other symmetries (3.64), (3.78) and (3.79) are enough to imply

(3.81), as 
an be easily shown by expanding (3.83) and messing with the resulting terms.

Therefore imposing the additional 
onstraint of (3.83) is equivalent to imposing (3.81), on
e

the other symmetries have been a

ounted for. How many independent restri
tions does this

represent? Let us imagine de
omposing

R

����

= X

����

+R

[���� ℄

: (3.84)

It is easy to see that any totally antisymmetri
 4-index tensor is automati
ally antisymmetri


in its �rst and last indi
es, and symmetri
 under inter
hange of the two pairs. Therefore

these properties are independent restri
tions on X

����

, unrelated to the requirement (3.83).

Now a totally antisymmetri
 4-index tensor has n(n�1)(n�2)(n�3)=4! terms, and therefore

(3.83) redu
es the number of independent 
omponents by this amount. We are left with

1

8

(n

4

� 2n

3

+ 3n

2

� 2n) �

1

24

n(n � 1)(n � 2)(n� 3) =

1

12

n

2

(n

2

� 1) (3.85)

independent 
omponents of the Riemann tensor.

In four dimensions, therefore, the Riemann tensor has 20 independent 
omponents. (In

one dimension it has none.) These twenty fun
tions are pre
isely the 20 degrees of freedom

in the se
ond derivatives of the metri
 whi
h we 
ould not set to zero by a 
lever 
hoi
e of


oordinates. This should reinfor
e your 
on�den
e that the Riemann tensor is an appropriate

measure of 
urvature.

In addition to the algebrai
 symmetries of the Riemann tensor (whi
h 
onstrain the

number of independent 
omponents at any point), there is a di�erential identity whi
h

it obeys (whi
h 
onstrains its relative values at di�erent points). Consider the 
ovariant

derivative of the Riemann tensor, evaluated in Riemann normal 
oordinates:

r

�

R

����

= �

�

R

����

=

1

2

�

�

(�

�

�

�

g

��

� �

�

�

�

g

��

� �

�

�

�

g

��

+ �

�

�

�

g

��

) : (3.86)

We would like to 
onsider the sum of 
y
li
 permutations of the �rst three indi
es:

r

�

R

����

+r

�

R

����

+r

�

R

����

=

1

2

(�

�

�

�

�

�

g

��

� �

�

�

�

�

�
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��

� �

�

�

�

�

�

g

��

+ �

�

�

�

�

�

g

��

+�

�

�

�

�

�

g

��

� �

�

�

�

�

�

g

��

� �

�

�

�

�

�

g

��

+ �

�

�

�

�

�

g

��

+�

�

�

�

�

�

g

��

� �

�

�

�

�

�

g

��

� �

�

�

�

�

�

g

��

+ �

�

�

�

�

�

g

��

)

= 0 : (3.87)

On
e again, sin
e this is an equation between tensors it is true in any 
oordinate system,

even though we derived it in a parti
ular one. We re
ognize by now that the antisymmetry
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R

����

= �R

����

allows us to write this result as

r

[�

R

��℄��

= 0 : (3.88)

This is known as the Bian
hi identity. (Noti
e that for a general 
onne
tion there would

be additional terms involving the torsion tensor.) It is 
losely related to the Ja
obi identity,

sin
e (as you 
an show) it basi
ally expresses

[[r

�

;r

�

℄;r

�

℄ + [[r

�

;r

�

℄;r

�

℄ + [[r

�

;r

�

℄;r

�

℄ = 0 : (3.89)

It is frequently useful to 
onsider 
ontra
tions of the Riemann tensor. Even without the

metri
, we 
an form a 
ontra
tion known as the Ri

i tensor:

R

��

= R

�

���

: (3.90)

Noti
e that, for the 
urvature tensor formed from an arbitrary (not ne
essarily Christo�el)


onne
tion, there are a number of independent 
ontra
tions to take. Our primary 
on
ern is

with the Christo�el 
onne
tion, for whi
h (3.90) is the only independent 
ontra
tion (modulo


onventions for the sign, whi
h of 
ourse 
hange from pla
e to pla
e). The Ri

i tensor

asso
iated with the Christo�el 
onne
tion is symmetri
,

R

��

= R

��

; (3.91)

as a 
onsequen
e of the various symmetries of the Riemann tensor. Using the metri
, we 
an

take a further 
ontra
tion to form the Ri

i s
alar:

R = R

�

�

= g

��

R

��

: (3.92)

An espe
ially useful form of the Bian
hi identity 
omes from 
ontra
ting twi
e on (3.87):

0 = g

��

g

��

(r

�

R

����

+r

�

R

����

+r

�

R

����

)

= r

�

R

��

�r

�

R+r

�

R

��

; (3.93)

or

r

�

R

��

=

1

2

r

�

R : (3.94)

(Noti
e that, unlike the partial derivative, it makes sense to raise an index on the 
ovariant

derivative, due to metri
 
ompatibility.) If we de�ne the Einstein tensor as

G

��

= R

��

�

1

2

Rg

��

; (3.95)

then we see that the twi
e-
ontra
ted Bian
hi identity (3.94) is equivalent to

r

�

G

��

= 0 : (3.96)
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The Einstein tensor, whi
h is symmetri
 due to the symmetry of the Ri

i tensor and the

metri
, will be of great importan
e in general relativity.

The Ri

i tensor and the Ri

i s
alar 
ontain information about \tra
es" of the Riemann

tensor. It is sometimes useful to 
onsider separately those pie
es of the Riemann tensor

whi
h the Ri

i tensor doesn't tell us about. We therefore invent theWeyl tensor, whi
h is

basi
ally the Riemann tensor with all of its 
ontra
tions removed. It is given in n dimensions

by

C

����

= R

����

�

2

(n� 2)

�

g

�[�

R

�℄�

� g

�[�

R

�℄�

�

+

2

(n� 1)(n� 2)

Rg

�[�

g

�℄�

: (3.97)

This messy formula is designed so that all possible 
ontra
tions of C

����

vanish, while it

retains the symmetries of the Riemann tensor:

C

����

= C

[��℄[��℄

;

C

����

= C

����

;

C

�[��� ℄

= 0 : (3.98)

The Weyl tensor is only de�ned in three or more dimensions, and in three dimensions it

vanishes identi
ally. For n � 4 it satis�es a version of the Bian
hi identity,

r

�

C

����

= �2

(n� 3)

(n� 2)

 

r

[�

R

�℄�

+

1

2(n� 1)

g

�[�

r

�℄

R

!

: (3.99)

One of the most important properties of the Weyl tensor is that it is invariant under 
onfor-

mal transformations. This means that if you 
ompute C

����

for some metri
 g

��

, and then


ompute it again for a metri
 given by 


2

(x)g

��

, where 
(x) is an arbitrary nonvanishing

fun
tion of spa
etime, you get the same answer. For this reason it is often known as the

\
onformal tensor."

After this large amount of formalism, it might be time to step ba
k and think about what


urvature means for some simple examples. First noti
e that, a

ording to (3.85), in 1, 2, 3

and 4 dimensions there are 0, 1, 6 and 20 
omponents of the 
urvature tensor, respe
tively.

(Everything we say about the 
urvature in these examples refers to the 
urvature asso
iated

with the Christo�el 
onne
tion, and therefore the metri
.) This means that one-dimensional

manifolds (su
h as S

1

) are never 
urved; the intuition you have that tells you that a 
ir
le is


urved 
omes from thinking of it embedded in a 
ertain 
at two-dimensional plane. (There is

something 
alled \extrinsi
 
urvature," whi
h 
hara
terizes the way something is embedded

in a higher dimensional spa
e. Our notion of 
urvature is \intrinsi
," and has nothing to do

with su
h embeddings.)

The distin
tion between intrinsi
 and extrinsi
 
urvature is also important in two dimen-

sions, where the 
urvature has one independent 
omponent. (In fa
t, all of the information
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identify

about the 
urvature is 
ontained in the single 
omponent of the Ri

i s
alar.) Consider a


ylinder, R � S

1

. Although this looks 
urved from our point of view, it should be 
lear

that we 
an put a metri
 on the 
ylinder whose 
omponents are 
onstant in an appropriate


oordinate system | simply unroll it and use the indu
ed metri
 from the plane. In this

metri
, the 
ylinder is 
at. (There is also nothing to stop us from introdu
ing a di�erent

metri
 in whi
h the 
ylinder is not 
at, but the point we are trying to emphasize is that it


an be made 
at in some metri
.) The same story holds for the torus:

identify

We 
an think of the torus as a square region of the plane with opposite sides identi�ed (in

other words, S

1

� S

1

), from whi
h it is 
lear that it 
an have a 
at metri
 even though it

looks 
urved from the embedded point of view.

A 
one is an example of a two-dimensional manifold with nonzero 
urvature at exa
tly

one point. We 
an see this also by unrolling it; the 
one is equivalent to the plane with a

\de�
it angle" removed and opposite sides identi�ed:
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In the metri
 inherited from this des
ription as part of the 
at plane, the 
one is 
at every-

where but at its vertex. This 
an be seen by 
onsidering parallel transport of a ve
tor around

various loops; if a loop does not en
lose the vertex, there will be no overall transformation,

whereas a loop that does en
lose the vertex (say, just one time) will lead to a rotation by an

angle whi
h is just the de�
it angle.

Our favorite example is of 
ourse the two-sphere, with metri


ds

2

= a

2

(d�

2

+ sin

2

� d�

2

) ; (3.100)

where a is the radius of the sphere (thought of as embedded in R

3

). Without going through

the details, the nonzero 
onne
tion 
oeÆ
ients are

�

�

��

= � sin � 
os �

�

�

��

= �

�

��

= 
ot � : (3.101)

Let's 
ompute a promising 
omponent of the Riemann tensor:

R

�

���

= �

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��
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= (sin

2

� � 
os

2

�)� (0) + (0)� (� sin � 
os �)(
ot �)

= sin

2

� : (3.102)

(The notation is obviously imperfe
t, sin
e the Greek letter � is a dummy index whi
h is

summed over, while the Greek letters � and � represent spe
i�
 
oordinates.) Lowering an

index, we have

R

����

= g

��

R

�

���

= g

��

R

�

���

= a

2

sin

2

� : (3.103)

It is easy to 
he
k that all of the 
omponents of the Riemann tensor either vanish or are

related to this one by symmetry. We 
an go on to 
ompute the Ri

i tensor via R

��

=

g

��

R

����

. We obtain

R

��

= g

��

R

����

= 1

R

��

= R

��

= 0

R

��

= g

��

R

����

= sin

2

� : (3.104)

The Ri

i s
alar is similarly straightforward:

R = g

��

R

��

+ g

��

R

��

=

2

a

2

: (3.105)

Therefore the Ri

i s
alar, whi
h for a two-dimensional manifold 
ompletely 
hara
terizes

the 
urvature, is a 
onstant over this two-sphere. This is a re
e
tion of the fa
t that the

manifold is \maximally symmetri
," a 
on
ept we will de�ne more pre
isely later (although it

means what you think it should). In any number of dimensions the 
urvature of a maximally

symmetri
 spa
e satis�es (for some 
onstant a)

R

����

= a

�2

(g

��

g

��

� g

��

g

��

) ; (3.106)

whi
h you may 
he
k is satis�ed by this example.

Noti
e that the Ri

i s
alar is not only 
onstant for the two-sphere, it is manifestly

positive. We say that the sphere is \positively 
urved" (of 
ourse a 
onvention or two 
ame

into play, but fortunately our 
onventions 
onspired so that spa
es whi
h everyone agrees

to 
all positively 
urved a
tually have a positive Ri

i s
alar). From the point of view of

someone living on a manifold whi
h is embedded in a higher-dimensional Eu
lidean spa
e,

if they are sitting at a point of positive 
urvature the spa
e 
urves away from them in the

same way in any dire
tion, while in a negatively 
urved spa
e it 
urves away in opposite

dire
tions. Negatively 
urved spa
es are therefore saddle-like.

Enough fun with examples. There is one more topi
 we have to 
over before introdu
ing

general relativity itself: geodesi
 deviation. You have undoubtedly heard that the de�ning
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positive curvature

negative curvature

property of Eu
lidean (
at) geometry is the parallel postulate: initially parallel lines remain

parallel forever. Of 
ourse in a 
urved spa
e this is not true; on a sphere, 
ertainly, initially

parallel geodesi
s will eventually 
ross. We would like to quantify this behavior for an

arbitrary 
urved spa
e.

The problem is that the notion of \parallel" does not extend naturally from 
at to 
urved

spa
es. Instead what we will do is to 
onstru
t a one-parameter family of geodesi
s, 


s

(t).

That is, for ea
h s 2 R, 


s

is a geodesi
 parameterized by the aÆne parameter t. The


olle
tion of these 
urves de�nes a smooth two-dimensional surfa
e (embedded in a manifold

M of arbitrary dimensionality). The 
oordinates on this surfa
e may be 
hosen to be s and

t, provided we have 
hosen a family of geodesi
s whi
h do not 
ross. The entire surfa
e is

the set of points x

�

(s; t) 2M . We have two natural ve
tor �elds: the tangent ve
tors to the

geodesi
s,

T

�

=

�x

�

�t

; (3.107)

and the \deviation ve
tors"

S

�

=

�x

�

�s

: (3.108)

This name derives from the informal notion that S

�

points from one geodesi
 towards the

neighboring ones.

The idea that S

�

points from one geodesi
 to the next inspires us to de�ne the \relative

velo
ity of geodesi
s,"

V

�

= (r

T

S)

�

= T

�

r

�

S

�

; (3.109)

and the \relative a

eleration of geodesi
s,"

a

�

= (r

T

V )

�

= T

�

r

�

V

�

: (3.110)

You should take the names with a grain of salt, but these ve
tors are 
ertainly well-de�ned.
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t

s

T

S

γ  (  )
s tµ

µ

Sin
e S and T are basis ve
tors adapted to a 
oordinate system, their 
ommutator van-

ishes:

[S; T ℄ = 0 :

We would like to 
onsider the 
onventional 
ase where the torsion vanishes, so from (3.70)

we then have

S

�

r

�

T

�

= T

�

r

�

S

�

: (3.111)

With this in mind, let's 
ompute the a

eleration:

a

�

= T

�

r

�

(T

�

r

�

S

�

)

= T

�

r

�

(S

�

r

�

T

�

)

= (T

�

r

�

S

�

)(r

�

T

�

) + T

�

S

�

r

�

r

�

T

�

= (S

�

r

�

T

�

)(r

�

T

�

) + T

�

S

�

(r

�

r

�

T

�

+R

�

���

T

�

)

= (S

�

r

�

T

�

)(r

�

T

�

) + S

�

r

�

(T

�

r

�

T

�

)� (S

�

r

�

T

�

)r

�

T

�

+R

�

���

T

�

T

�

S

�

= R

�

���

T

�

T

�

S

�

: (3.112)

Let's think about this line by line. The �rst line is the de�nition of a

�

, and the se
ond

line 
omes dire
tly from (3.111). The third line is simply the Leibniz rule. The fourth

line repla
es a double 
ovariant derivative by the derivatives in the opposite order plus the

Riemann tensor. In the �fth line we use Leibniz again (in the opposite order from usual),

and then we 
an
el two identi
al terms and noti
e that the term involving T

�

r

�

T

�

vanishes

be
ause T

�

is the tangent ve
tor to a geodesi
. The result,

a

�

=

D

2

dt

2

S

�

= R

�

���

T

�

T

�

S

�

; (3.113)
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is known as the geodesi
 deviation equation. It expresses something that we might have

expe
ted: the relative a

eleration between two neighboring geodesi
s is proportional to the


urvature.

Physi
ally, of 
ourse, the a

eleration of neighboring geodesi
s is interpreted as a mani-

festation of gravitational tidal for
es. This reminds us that we are very 
lose to doing physi
s

by now.

There is one last pie
e of formalism whi
h it would be ni
e to 
over before we move

on to gravitation proper. What we will do is to 
onsider on
e again (although mu
h more


on
isely) the formalism of 
onne
tions and 
urvature, but this time we will use sets of basis

ve
tors in the tangent spa
e whi
h are not derived from any 
oordinate system. It will turn

out that this slight 
hange in emphasis reveals a di�erent point of view on the 
onne
tion

and 
urvature, one in whi
h the relationship to gauge theories in parti
le physi
s is mu
h

more transparent. In fa
t the 
on
epts to be introdu
ed are very straightforward, but the

subje
t is a notational nightmare, so it looks more diÆ
ult than it really is.

Up until now we have been taking advantage of the fa
t that a natural basis for the

tangent spa
e T

p

at a point p is given by the partial derivatives with respe
t to the 
oordinates

at that point, ê

(�)

= �

�

. Similarly, a basis for the 
otangent spa
e T

�

p

is given by the gradients

of the 
oordinate fun
tions,

^

�

(�)

= dx

�

. There is nothing to stop us, however, from setting up

any bases we like. Let us therefore imagine that at ea
h point in the manifold we introdu
e

a set of basis ve
tors ê

(a)

(indexed by a Latin letter rather than Greek, to remind us that

they are not related to any 
oordinate system). We will 
hoose these basis ve
tors to be

\orthonormal", in a sense whi
h is appropriate to the signature of the manifold we are

working on. That is, if the 
anoni
al form of the metri
 is written �

ab

, we demand that the

inner produ
t of our basis ve
tors be

g(ê

(a)

; ê

(b)

) = �

ab

; (3.114)

where g( ; ) is the usual metri
 tensor. Thus, in a Lorentzian spa
etime �

ab

represents

the Minkowski metri
, while in a spa
e with positive-de�nite metri
 it would represent the

Eu
lidean metri
. The set of ve
tors 
omprising an orthonormal basis is sometimes known

as a tetrad (from Greek tetras, \a group of four") or vielbein (from the German for \many

legs"). In di�erent numbers of dimensions it o

asionally be
omes a vierbein (four), dreibein

(three), zweibein (two), and so on. (Just as we 
annot in general �nd 
oordinate 
harts whi
h


over the entire manifold, we will often not be able to �nd a single set of smooth basis ve
tor

�elds whi
h are de�ned everywhere. As usual, we 
an over
ome this problem by working in

di�erent pat
hes and making sure things are well-behaved on the overlaps.)

The point of having a basis is that any ve
tor 
an be expressed as a linear 
ombination

of basis ve
tors. Spe
i�
ally, we 
an express our old basis ve
tors ê

(�)

= �

�

in terms of the
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new ones:

ê

(�)

= e

a

�

ê

(a)

: (3.115)

The 
omponents e

a

�

form an n � n invertible matrix. (In a

ord with our usual pra
ti
e of

blurring the distin
tion between obje
ts and their 
omponents, we will refer to the e

a

�

as

the tetrad or vielbein, and often in the plural as \vielbeins.") We denote their inverse by

swit
hing indi
es to obtain e

�

a

, whi
h satisfy

e

�

a

e

a

�

= Æ

�

�

; e

a

�

e

�

b

= Æ

a

b

: (3.116)

These serve as the 
omponents of the ve
tors ê

(a)

in the 
oordinate basis:

ê

(a)

= e

�

a

ê

(�)

: (3.117)

In terms of the inverse vielbeins, (3.114) be
omes

g

��

e

�

a

e

�

b

= �

ab

; (3.118)

or equivalently

g

��

= e

a

�

e

b

�

�

ab

: (3.119)

This last equation sometimes leads people to say that the vielbeins are the \square root" of

the metri
.

We 
an similarly set up an orthonormal basis of one-forms in T

�

p

, whi
h we denote

^

�

(a)

.

They may be 
hosen to be 
ompatible with the basis ve
tors, in the sense that

^

�

(a)

(ê

(b)

) = Æ

a

b

: (3.120)

It is an immediate 
onsequen
e of this that the orthonormal one-forms are related to their


oordinate-based 
ousins

^

�

(�)

= dx

�

by

^

�

(�)

= e

�

a

^

�

(a)

(3.121)

and

^

�

(a)

= e

a

�

^

�

(�)

: (3.122)

The vielbeins e

a

�

thus serve double duty as the 
omponents of the 
oordinate basis ve
tors

in terms of the orthonormal basis ve
tors, and as 
omponents of the orthonormal basis

one-forms in terms of the 
oordinate basis one-forms; while the inverse vielbeins serve as

the 
omponents of the orthonormal basis ve
tors in terms of the 
oordinate basis, and as


omponents of the 
oordinate basis one-forms in terms of the orthonormal basis.

Any other ve
tor 
an be expressed in terms of its 
omponents in the orthonormal basis.

If a ve
tor V is written in the 
oordinate basis as V

�

ê

(�)

and in the orthonormal basis as

V

a

ê

(a)

, the sets of 
omponents will be related by

V

a

= e

a

�

V

�

: (3.123)
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So the vielbeins allow us to \swit
h from Latin to Greek indi
es and ba
k." The ni
e property

of tensors, that there is usually only one sensible thing to do based on index pla
ement, is

of great help here. We 
an go on to refer to multi-index tensors in either basis, or even in

terms of mixed 
omponents:

V

a

b

= e

a

�

V

�

b

= e

�

b

V

a

�

= e

a

�

e

�

b

V

�

�

: (3.124)

Looking ba
k at (3.118), we see that the 
omponents of the metri
 tensor in the orthonormal

basis are just those of the 
at metri
, �

ab

. (For this reason the Greek indi
es are sometimes

referred to as \
urved" and the Latin ones as \
at.") In fa
t we 
an go so far as to raise and

lower the Latin indi
es using the 
at metri
 and its inverse �

ab

. You 
an 
he
k for yourself

that everything works okay (e.g., that the lowering an index with the metri
 
ommutes with


hanging from orthonormal to 
oordinate bases).

By introdu
ing a new set of basis ve
tors and one-forms, we ne
essitate a return to our

favorite topi
 of transformation properties. We've been 
areful all along to emphasize that

the tensor transformation law was only an indire
t out
ome of a 
oordinate transformation;

the real issue was a 
hange of basis. Now that we have non-
oordinate bases, these bases 
an

be 
hanged independently of the 
oordinates. The only restri
tion is that the orthonormality

property (3.114) be preserved. But we know what kind of transformations preserve the 
at

metri
 | in a Eu
lidean signature metri
 they are orthogonal transformations, while in a

Lorentzian signature metri
 they are Lorentz transformations. We therefore 
onsider 
hanges

of basis of the form

ê

(a)

! ê

(a

0

)

= �

a

0

a

(x)ê

(a)

; (3.125)

where the matri
es �

a

0

a

(x) represent position-dependent transformations whi
h (at ea
h

point) leave the 
anoni
al form of the metri
 unaltered:

�

a

0

a

�

b

0

b

�

ab

= �

a

0

b

0

: (3.126)

In fa
t these matri
es 
orrespond to what in 
at spa
e we 
alled the inverse Lorentz trans-

formations (whi
h operate on basis ve
tors); as before we also have ordinary Lorentz trans-

formations �

a

0

a

, whi
h transform the basis one-forms. As far as 
omponents are 
on
erned,

as before we transform upper indi
es with �

a

0

a

and lower indi
es with �

a

0

a

.

So we now have the freedom to perform a Lorentz transformation (or an ordinary Eu-


lidean rotation, depending on the signature) at every point in spa
e. These transformations

are therefore 
alled lo
al Lorentz transformations, or LLT's. We still have our usual

freedom to make 
hanges in 
oordinates, whi
h are 
alled general 
oordinate trans-

formations, or GCT's. Both 
an happen at the same time, resulting in a mixed tensor

transformation law:

T

a

0

�

0

b

0

�

0

= �

a

0

a

�x

�

0

�x

�

�

b

0

b

�x

�

�x

�

0

T

a�

b�

: (3.127)
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Translating what we know about tensors into non-
oordinate bases is for the most part

merely a matter of sti
king vielbeins in the right pla
es. The 
ru
ial ex
eption 
omes when

we begin to di�erentiate things. In our ordinary formalism, the 
ovariant derivative of a

tensor is given by its partial derivative plus 
orre
tion terms, one for ea
h index, involving

the tensor and the 
onne
tion 
oeÆ
ients. The same pro
edure will 
ontinue to be true

for the non-
oordinate basis, but we repla
e the ordinary 
onne
tion 
oeÆ
ients �

�

��

by the

spin 
onne
tion, denoted !

�

a

b

. Ea
h Latin index gets a fa
tor of the spin 
onne
tion in

the usual way:

r

�

X

a

b

= �

�

X

a

b

+ !

�

a




X




b

� !

�




b

X

a




: (3.128)

(The name \spin 
onne
tion" 
omes from the fa
t that this 
an be used to take 
ovari-

ant derivatives of spinors, whi
h is a
tually impossible using the 
onventional 
onne
tion


oeÆ
ients.) In the presen
e of mixed Latin and Greek indi
es we get terms of both kinds.

The usual demand that a tensor be independent of the way it is written allows us to

derive a relationship between the spin 
onne
tion, the vielbeins, and the �

�

��

's. Consider the


ovariant derivative of a ve
tor X, �rst in a purely 
oordinate basis:

rX = (r

�

X

�

)dx

�


 �

�

= (�

�

X

�

+ �

�

��

X

�

)dx

�


 �

�

: (3.129)

Now �nd the same obje
t in a mixed basis, and 
onvert into the 
oordinate basis:

rX = (r

�

X

a

)dx

�


 ê

(a)

= (�

�

X

a

+ !

�

a

b

X

b

)dx

�


 ê

(a)

= (�

�

(e

a

�

X

�

) + !

�

a

b

e

b

�

X

�

)dx

�


 (e

�

a

�

�

)

= e

�

a

(e

a

�

�

�

X

�

+X

�

�

�

e

a

�

+ !

�

a

b

e

b

�

X

�

)dx

�


 �

�

= (�

�

X

�

+ e

�

a

�

�

e

a

�

X

�

+ e

�

a

e

b

�

!

�

a

b

X

�

)dx

�


 �

�

: (3.130)

Comparison with (3.129) reveals

�

�

��

= e

�

a

�

�

e

a

�

+ e

�

a

e

b

�

!

�

a

b

; (3.131)

or equivalently

!

�

a

b

= e

a

�

e

�

b

�

�

��

� e

�

b

�

�

e

a

�

: (3.132)

A bit of manipulation allows us to write this relation as the vanishing of the 
ovariant

derivative of the vielbein,

r

�

e

a

�

= 0 ; (3.133)

whi
h is sometimes known as the \tetrad postulate." Note that this is always true; we did

not need to assume anything about the 
onne
tion in order to derive it. Spe
i�
ally, we did

not need to assume that the 
onne
tion was metri
 
ompatible or torsion free.
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Sin
e the 
onne
tion may be thought of as something we need to �x up the transformation

law of the 
ovariant derivative, it should 
ome as no surprise that the spin 
onne
tion does

not itself obey the tensor transformation law. A
tually, under GCT's the one lower Greek

index does transform in the right way, as a one-form. But under LLT's the spin 
onne
tion

transforms inhomogeneously, as

!

�

a

0

b

0

= �

a

0

a

�

b

0

b

!

�

a

b

� �

b

0




�

�

�

a

0




: (3.134)

You are en
ouraged to 
he
k for yourself that this results in the proper transformation of

the 
ovariant derivative.

So far we have done nothing but empty formalism, translating things we already knew

into a new notation. But the work we are doing does buy us two things. The �rst, whi
h

we already alluded to, is the ability to des
ribe spinor �elds on spa
etime and take their


ovariant derivatives; we won't explore this further right now. The se
ond is a 
hange in

viewpoint, in whi
h we 
an think of various tensors as tensor-valued di�erential forms. For

example, an obje
t like X

�

a

, whi
h we think of as a (1; 1) tensor written with mixed indi
es,


an also be thought of as a \ve
tor-valued one-form." It has one lower Greek index, so we

think of it as a one-form, but for ea
h value of the lower index it is a ve
tor. Similarly a

tensor A

��

a

b

, antisymmetri
 in � and �, 
an be thought of as a \(1; 1)-tensor-valued two-

form." Thus, any tensor with some number of antisymmetri
 lower Greek indi
es and some

number of Latin indi
es 
an be thought of as a di�erential form, but taking values in the

tensor bundle. (Ordinary di�erential forms are simply s
alar-valued forms.) The usefulness

of this viewpoint 
omes when we 
onsider exterior derivatives. If we want to think of X

�

a

as a ve
tor-valued one-form, we are tempted to take its exterior derivative:

(dX)

��

a

= �

�

X

�

a

� �

�

X

�

a

: (3.135)

It is easy to 
he
k that this obje
t transforms like a two-form (that is, a

ording to the

transformation law for (0; 2) tensors) under GCT's, but not as a ve
tor under LLT's (the

Lorentz transformations depend on position, whi
h introdu
es an inhomogeneous term into

the transformation law). But we 
an �x this by judi
ious use of the spin 
onne
tion, whi
h


an be thought of as a one-form. (Not a tensor-valued one-form, due to the nontensorial

transformation law (3.134).) Thus, the obje
t

(dX)

��

a

+ (! ^X)

��

a

= �

�

X

�

a

� �

�

X

�

a

+ !

�

a

b

X

�

b

� !

�

a

b

X

�

b

; (3.136)

as you 
an verify at home, transforms as a proper tensor.

An immediate appli
ation of this formalism is to the expressions for the torsion and


urvature, the two tensors whi
h 
hara
terize any given 
onne
tion. The torsion, with two

antisymmetri
 lower indi
es, 
an be thought of as a ve
tor-valued two-form T

��

a

. The
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urvature, whi
h is always antisymmetri
 in its last two indi
es, is a (1; 1)-tensor-valued

two-form, R

a

b��

. Using our freedom to suppress indi
es on di�erential forms, we 
an write

the de�ning relations for these two tensors as

T

a

= de

a

+ !

a

b

^ e

b

(3.137)

and

R

a

b

= d!

a

b

+ !

a




^ !




b

: (3.138)

These are known as the Maurer-Cartan stru
ture equations. They are equivalent to

the usual de�nitions; let's go through the exer
ise of showing this for the torsion, and you


an 
he
k the 
urvature for yourself. We have

T

��

�

= e

�

a

T

��

a

= e

�

a

(�

�

e

�

a

� �

�

e

�

a

+ !

�

a

b

e

�

b

� !

�

a

b

e

�

b

)

= �

�

��

� �

�

��

; (3.139)

whi
h is just the original de�nition we gave. Here we have used (3.131), the expression for

the �

�

��

's in terms of the vielbeins and spin 
onne
tion. We 
an also express identities obeyed

by these tensors as

dT

a

+ !

a

b

^ T

b

= R

a

b

^ e

b

(3.140)

and

dR

a

b

+ !

a




^R




b

�R

a




^ !




b

= 0 : (3.141)

The �rst of these is the generalization of R

�

[��� ℄

= 0, while the se
ond is the Bian
hi identity

r

[�j

R

�

�j�� ℄

= 0. (Sometimes both equations are 
alled Bian
hi identities.)

The form of these expressions leads to an almost irresistible temptation to de�ne a

\
ovariant-exterior derivative", whi
h a
ts on a tensor-valued form by taking the ordinary

exterior derivative and then adding appropriate terms with the spin 
onne
tion, one for ea
h

Latin index. Although we won't do that here, it is okay to give in to this temptation, and

in fa
t the right hand side of (3.137) and the left hand sides of (3.140) and (3.141) 
an be

thought of as just su
h 
ovariant-exterior derivatives. But be 
areful, sin
e (3.138) 
annot;

you 
an't take any sort of 
ovariant derivative of the spin 
onne
tion, sin
e it's not a tensor.

So far our equations have been true for general 
onne
tions; let's see what we get for the

Christo�el 
onne
tion. The torsion-free requirement is just that (3.137) vanish; this does

not lead immediately to any simple statement about the 
oeÆ
ients of the spin 
onne
tion.

Metri
 
ompatibility is expressed as the vanishing of the 
ovariant derivative of the metri
:

rg = 0. We 
an see what this leads to when we express the metri
 in the orthonormal basis,

where its 
omponents are simply �

ab

:

r

�

�

ab

= �

�

�

ab

� !

�




a

�


b

� !

�




b

�

a
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= �!

�ab

� !

�ba

: (3.142)

Then setting this equal to zero implies

!

�ab

= �!

�ba

: (3.143)

Thus, metri
 
ompatibility is equivalent to the antisymmetry of the spin 
onne
tion in its

Latin indi
es. (As before, su
h a statement is only sensible if both indi
es are either upstairs

or downstairs.) These two 
onditions together allow us to express the spin 
onne
tion in

terms of the vielbeins. There is an expli
it formula whi
h expresses this solution, but in

pra
ti
e it is easier to simply solve the torsion-free 
ondition

!

ab

^ e

b

= �de

a

; (3.144)

using the asymmetry of the spin 
onne
tion, to �nd the individual 
omponents.

We now have the means to 
ompare the formalism of 
onne
tions and 
urvature in Rie-

mannian geometry to that of gauge theories in parti
le physi
s. (This is an aside, whi
h is

hopefully 
omprehensible to everybody, but not an essential ingredient of the 
ourse.) In

both situations, the �elds of interest live in ve
tor spa
es whi
h are assigned to ea
h point

in spa
etime. In Riemannian geometry the ve
tor spa
es in
lude the tangent spa
e, the


otangent spa
e, and the higher tensor spa
es 
onstru
ted from these. In gauge theories,

on the other hand, we are 
on
erned with \internal" ve
tor spa
es. The distin
tion is that

the tangent spa
e and its relatives are intimately asso
iated with the manifold itself, and

were naturally de�ned on
e the manifold was set up; an internal ve
tor spa
e 
an be of any

dimension we like, and has to be de�ned as an independent addition to the manifold. In

math lingo, the union of the base manifold with the internal ve
tor spa
es (de�ned at ea
h

point) is a �ber bundle, and ea
h 
opy of the ve
tor spa
e is 
alled the \�ber" (in perfe
t

a

ord with our de�nition of the tangent bundle).

Besides the base manifold (for us, spa
etime) and the �bers, the other important ingre-

dient in the de�nition of a �ber bundle is the \stru
ture group," a Lie group whi
h a
ts

on the �bers to des
ribe how they are sewn together on overlapping 
oordinate pat
hes.

Without going into details, the stru
ture group for the tangent bundle in a four-dimensional

spa
etime is generally GL(4;R), the group of real invertible 4 � 4 matri
es; if we have a

Lorentzian metri
, this may be redu
ed to the Lorentz group SO(3; 1). Now imagine that

we introdu
e an internal three-dimensional ve
tor spa
e, and sew the �bers together with

ordinary rotations; the stru
ture group of this new bundle is then SO(3). A �eld that lives

in this bundle might be denoted �

A

(x

�

), where A runs from one to three; it is a three-ve
tor

(an internal one, unrelated to spa
etime) for ea
h point on the manifold. We have freedom

to 
hoose the basis in the �bers in any way we wish; this means that \physi
al quantities"

should be left invariant under lo
al SO(3) transformations su
h as

�

A

(x

�

)! �

A

0

(x

�

) = O

A

0

A

(x

�

)�

A

(x

�

) ; (3.145)
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where O

A

0

A

(x

�

) is a matrix in SO(3) whi
h depends on spa
etime. Su
h transformations

are known as gauge transformations, and theories invariant under them are 
alled \gauge

theories."

For the most part it is not hard to arrange things su
h that physi
al quantities are

invariant under gauge transformations. The one diÆ
ulty arises when we 
onsider partial

derivatives, �

�

�

A

. Be
ause the matrix O

A

0

A

(x

�

) depends on spa
etime, it will 
ontribute an

unwanted term to the transformation of the partial derivative. By now you should be able

to guess the solution: introdu
e a 
onne
tion to 
orre
t for the inhomogeneous term in the

transformation law. We therefore de�ne a 
onne
tion on the �ber bundle to be an obje
t

A

�

A

B

, with two \group indi
es" and one spa
etime index. Under GCT's it transforms as a

one-form, while under gauge transformations it transforms as

A

�

A

0

B

0

= O

A

0

A

O

B

0

B

A

�

A

B

�O

B

0

C

�

�

O

A

0

C

: (3.146)

(Beware: our 
onventions are so drasti
ally di�erent from those in the parti
le physi
s liter-

ature that I won't even try to get them straight.) With this transformation law, the \gauge


ovariant derivative"

D

�

�

A

= �

�

�

A

+A

�

A

B

�

B

(3.147)

transforms \tensorially" under gauge transformations, as you are wel
ome to 
he
k. (In

ordinary ele
tromagnetism the 
onne
tion is just the 
onventional ve
tor potential. No

indi
es are ne
essary, be
ause the stru
ture group U(1) is one-dimensional.)

It is 
lear that this notion of a 
onne
tion on an internal �ber bundle is very 
losely

related to the 
onne
tion on the tangent bundle, espe
ially in the orthonormal-frame pi
ture

we have been dis
ussing. The transformation law (3.146), for example, is exa
tly the same

as the transformation law (3.134) for the spin 
onne
tion. We 
an also de�ne a 
urvature or

\�eld strength" tensor whi
h is a two-form,

F

A

B

= dA

A

B

+A

A

C

^A

C

B

; (3.148)

in exa
t 
orresponden
e with (3.138). We 
an parallel transport things along paths, and

there is a 
onstru
tion analogous to the parallel propagator; the tra
e of the matrix obtained

by parallel transporting a ve
tor around a 
losed 
urve is 
alled a \Wilson loop."

We 
ould go on in the development of the relationship between the tangent bundle and

internal ve
tor bundles, but time is short and we have other �sh to fry. Let us instead �nish

by emphasizing the important di�eren
e between the two 
onstru
tions. The di�eren
e

stems from the fa
t that the tangent bundle is 
losely related to the base manifold, while

other �ber bundles are ta
ked on after the fa
t. It makes sense to say that a ve
tor in the

tangent spa
e at p \points along a path" through p; but this makes no sense for an internal

ve
tor bundle. There is therefore no analogue of the 
oordinate basis for an internal spa
e |
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partial derivatives along 
urves have nothing to do with internal ve
tors. It follows in turn

that there is nothing like the vielbeins, whi
h relate orthonormal bases to 
oordinate bases.

The torsion tensor, in parti
ular, is only de�ned for a 
onne
tion on the tangent bundle, not

for any gauge theory 
onne
tions; it 
an be thought of as the 
ovariant exterior derivative

of the vielbein, and no su
h 
onstru
tion is available on an internal bundle. You should

appre
iate the relationship between the di�erent uses of the notion of a 
onne
tion, without

getting 
arried away.



De
ember 1997 Le
ture Notes on General Relativity Sean M. Carroll

4 Gravitation

Having paid our mathemati
al dues, we are now prepared to examine the physi
s of gravita-

tion as des
ribed by general relativity. This subje
t falls naturally into two pie
es: how the


urvature of spa
etime a
ts on matter to manifest itself as \gravity", and how energy and

momentum in
uen
e spa
etime to 
reate 
urvature. In either 
ase it would be legitimate

to start at the top, by stating outright the laws governing physi
s in 
urved spa
etime and

working out their 
onsequen
es. Instead, we will try to be a little more motivational, starting

with basi
 physi
al prin
iples and attempting to argue that these lead naturally to an almost

unique physi
al theory.

The most basi
 of these physi
al prin
iples is the Prin
iple of Equivalen
e, whi
h 
omes

in a variety of forms. The earliest form dates from Galileo and Newton, and is known as

theWeak Equivalen
e Prin
iple, or WEP. The WEP states that the \inertial mass" and

\gravitational mass" of any obje
t are equal. To see what this means, think about Newton's

Se
ond Law. This relates the for
e exerted on an obje
t to the a

eleration it undergoes,

setting them proportional to ea
h other with the 
onstant of proportionality being the inertial

mass m

i

:

f = m

i

a : (4.1)

The inertial mass 
learly has a universal 
hara
ter, related to the resistan
e you feel when

you try to push on the obje
t; it is the same 
onstant no matter what kind of for
e is being

exerted. We also have the law of gravitation, whi
h states that the gravitational for
e exerted

on an obje
t is proportional to the gradient of a s
alar �eld �, known as the gravitational

potential. The 
onstant of proportionality in this 
ase is 
alled the gravitational mass m

g

:

f

g

= �m

g

r� : (4.2)

On the fa
e of it, m

g

has a very di�erent 
hara
ter than m

i

; it is a quantity spe
i�
 to the

gravitational for
e. If you like, it is the \gravitational 
harge" of the body. Nevertheless,

Galileo long ago showed (apo
ryphally by dropping weights o� of the Leaning Tower of Pisa,

a
tually by rolling balls down in
lined planes) that the response of matter to gravitation was

universal | every obje
t falls at the same rate in a gravitational �eld, independent of the


omposition of the obje
t. In Newtonian me
hani
s this translates into the WEP, whi
h is

simply

m

i

= m

g

(4.3)

for any obje
t. An immediate 
onsequen
e is that the behavior of freely-falling test parti
les

is universal, independent of their mass (or any other qualities they may have); in fa
t we

97
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have

a = �r� : (4.4)

The universality of gravitation, as implied by the WEP, 
an be stated in another, more

popular, form. Imagine that we 
onsider a physi
ist in a tightly sealed box, unable to

observe the outside world, who is doing experiments involving the motion of test parti
les,

for example to measure the lo
al gravitational �eld. Of 
ourse she would obtain di�erent

answers if the box were sitting on the moon or on Jupiter than she would on the Earth.

But the answers would also be di�erent if the box were a

elerating at a 
onstant velo
ity;

this would 
hange the a

eleration of the freely-falling parti
les with respe
t to the box.

The WEP implies that there is no way to disentangle the e�e
ts of a gravitational �eld

from those of being in a uniformly a

elerating frame, simply by observing the behavior of

freely-falling parti
les. This follows from the universality of gravitation; it would be possible

to distinguish between uniform a

eleration and an ele
tromagneti
 �eld, by observing the

behavior of parti
les with di�erent 
harges. But with gravity it is impossible, sin
e the

\
harge" is ne
essarily proportional to the (inertial) mass.

To be 
areful, we should limit our 
laims about the impossibility of distinguishing gravity

from uniform a

eleration by restri
ting our attention to \small enough regions of spa
etime."

If the sealed box were suÆ
iently big, the gravitational �eld would 
hange from pla
e to pla
e

in an observable way, while the e�e
t of a

eleration is always in the same dire
tion. In a

ro
ket ship or elevator, the parti
les always fall straight down:

In a very big box in a gravitational �eld, however, the parti
les will move toward the 
enter

of the Earth (for example), whi
h might be a di�erent dire
tion in di�erent regions:
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Earth

The WEP 
an therefore be stated as \the laws of freely-falling parti
les are the same in a

gravitational �eld and a uniformly a

elerated frame, in small enough regions of spa
etime."

In larger regions of spa
etime there will be inhomogeneities in the gravitational �eld, whi
h

will lead to tidal for
es whi
h 
an be dete
ted.

After the advent of spe
ial relativity, the 
on
ept of mass lost some of its uniqueness, as

it be
ame 
lear that mass was simply a manifestation of energy and momentum (E = m


2

and all that). It was therefore natural for Einstein to think about generalizing the WEP

to something more in
lusive. His idea was simply that there should be no way whatsoever

for the physi
ist in the box to distinguish between uniform a

eleration and an external

gravitational �eld, no matter what experiments she did (not only by dropping test parti
les).

This reasonable extrapolation be
ame what is now known as the Einstein Equivalen
e

Prin
iple, or EEP: \In small enough regions of spa
etime, the laws of physi
s redu
e to

those of spe
ial relativity; it is impossible to dete
t the existen
e of a gravitational �eld."

In fa
t, it is hard to imagine theories whi
h respe
t the WEP but violate the EEP.

Consider a hydrogen atom, a bound state of a proton and an ele
tron. Its mass is a
tually

less than the sum of the masses of the proton and ele
tron 
onsidered individually, be
ause

there is a negative binding energy | you have to put energy into the atom to separate the

proton and ele
tron. A

ording to the WEP, the gravitational mass of the hydrogen atom is

therefore less than the sum of the masses of its 
onstituents; the gravitational �eld 
ouples

to ele
tromagnetism (whi
h holds the atom together) in exa
tly the right way to make the

gravitational mass 
ome out right. This means that not only must gravity 
ouple to rest

mass universally, but to all forms of energy and momentum| whi
h is pra
ti
ally the 
laim

of the EEP. It is possible to 
ome up with 
ounterexamples, however; for example, we 
ould

imagine a theory of gravity in whi
h freely falling parti
les began to rotate as they moved

through a gravitational �eld. Then they 
ould fall along the same paths as they would in

an a

elerated frame (thereby satisfying the WEP), but you 
ould nevertheless dete
t the
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existen
e of the gravitational �eld (in violation of the EEP). Su
h theories seem 
ontrived,

but there is no law of nature whi
h forbids them.

Sometimes a distin
tion is drawn between \gravitational laws of physi
s" and \non-

gravitational laws of physi
s," and the EEP is de�ned to apply only to the latter. Then

one de�nes the \Strong Equivalen
e Prin
iple" (SEP) to in
lude all of the laws of physi
s,

gravitational and otherwise. I don't �nd this a parti
ularly useful distin
tion, and won't

belabor it. For our purposes, the EEP (or simply \the prin
iple of equivalen
e") in
ludes all

of the laws of physi
s.

It is the EEP whi
h implies (or at least suggests) that we should attribute the a
tion

of gravity to the 
urvature of spa
etime. Remember that in spe
ial relativity a prominent

role is played by inertial frames | while it was not possible to single out some frame of

referen
e as uniquely \at rest", it was possible to single out a family of frames whi
h were

\una

elerated" (inertial). The a

eleration of a 
harged parti
le in an ele
tromagneti
 �eld

was therefore uniquely de�ned with respe
t to these frames. The EEP, on the other hand,

implies that gravity is ines
apable | there is no su
h thing as a \gravitationally neutral

obje
t" with respe
t to whi
h we 
an measure the a

eleration due to gravity. It follows

that \the a

eleration due to gravity" is not something whi
h 
an be reliably de�ned, and

therefore is of little use.

Instead, it makes more sense to de�ne \una

elerated" as \freely falling," and that is

what we shall do. This point of view is the origin of the idea that gravity is not a \for
e"

| a for
e is something whi
h leads to a

eleration, and our de�nition of zero a

eleration is

\moving freely in the presen
e of whatever gravitational �eld happens to be around."

This seemingly inno
uous step has profound impli
ations for the nature of spa
etime. In

SR, we had a pro
edure for starting at some point and 
onstru
ting an inertial frame whi
h

stret
hed throughout spa
etime, by joining together rigid rods and atta
hing 
lo
ks to them.

But, again due to inhomogeneities in the gravitational �eld, this is no longer possible. If

we start in some freely-falling state and build a large stru
ture out of rigid rods, at some

distan
e away freely-falling obje
ts will look like they are \a

elerating" with respe
t to this

referen
e frame, as shown in the �gure on the next page.
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The solution is to retain the notion of inertial frames, but to dis
ard the hope that they


an be uniquely extended throughout spa
e and time. Instead we 
an de�ne lo
ally inertial

frames, those whi
h follow the motion of freely falling parti
les in small enough regions of

spa
etime. (Every time we say \small enough regions", purists should imagine a limiting

pro
edure in whi
h we take the appropriate spa
etime volume to zero.) This is the best we


an do, but it for
es us to give up a good deal. For example, we 
an no longer speak with


on�den
e about the relative velo
ity of far away obje
ts, sin
e the inertial referen
e frames

appropriate to those obje
ts are independent of those appropriate to us.

So far we have been talking stri
tly about physi
s, without jumping to the 
on
lusion

that spa
etime should be des
ribed as a 
urved manifold. It should be 
lear, however, why

su
h a 
on
lusion is appropriate. The idea that the laws of spe
ial relativity should be

obeyed in suÆ
iently small regions of spa
etime, and further that lo
al inertial frames 
an

be established in su
h regions, 
orresponds to our ability to 
onstru
t Riemann normal 
oor-

dinates at any one point on a manifold | 
oordinates in whi
h the metri
 takes its 
anoni
al

form and the Christo�el symbols vanish. The impossibility of 
omparing velo
ities (ve
tors)

at widely separated regions 
orresponds to the path-dependen
e of parallel transport on a


urved manifold. These 
onsiderations were enough to give Einstein the idea that gravity

was a manifestation of spa
etime 
urvature. But in fa
t we 
an be even more persuasive.

(It is impossible to \prove" that gravity should be thought of as spa
etime 
urvature, sin
e

s
ienti�
 hypotheses 
an only be falsi�ed, never veri�ed [and not even really falsi�ed, as

Thomas Kuhn has famously argued℄. But there is nothing to be dissatis�ed with about


onvin
ing plausibility arguments, if they lead to empiri
ally su

essful theories.)

Let's 
onsider one of the 
elebrated predi
tions of the EEP, the gravitational redshift.

Consider two boxes, a distan
e z apart, moving (far away from any matter, so we assume

in the absen
e of any gravitational �eld) with some 
onstant a

eleration a. At time t

0

the

trailing box emits a photon of wavelength �

0

.
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z

z

t = t t = t  + z / c

a

a

0 0

λ
0

The boxes remain a 
onstant distan
e apart, so the photon rea
hes the leading box after

a time �t = z=
 in the referen
e frame of the boxes. In this time the boxes will have pi
ked

up an additional velo
ity �v = a�t = az=
. Therefore, the photon rea
hing the lead box

will be redshifted by the 
onventional Doppler e�e
t by an amount

��

�

0

=

�v




=

az




2

: (4.5)

(We assume �v=
 is small, so we only work to �rst order.) A

ording to the EEP, the

same thing should happen in a uniform gravitational �eld. So we imagine a tower of height

z sitting on the surfa
e of a planet, with a

g

the strength of the gravitational �eld (what

Newton would have 
alled the \a

eleration due to gravity").

λ
0

z

This situation is supposed to be indistinguishable from the previous one, from the point of

view of an observer in a box at the top of the tower (able to dete
t the emitted photon, but
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otherwise unable to look outside the box). Therefore, a photon emitted from the ground

with wavelength �

0

should be redshifted by an amount

��

�

0

=

a

g

z




2

: (4.6)

This is the famous gravitational redshift. Noti
e that it is a dire
t 
onsequen
e of the EEP,

not of the details of general relativity. It has been veri�ed experimentally, �rst by Pound

and Rebka in 1960. They used the M�ossbauer e�e
t to measure the 
hange in frequen
y in


-rays as they traveled from the ground to the top of Je�erson Labs at Harvard.

The formula for the redshift is more often stated in terms of the Newtonian potential

�, where a

g

= r�. (The sign is 
hanged with respe
t to the usual 
onvention, sin
e we

are thinking of a

g

as the a

eleration of the referen
e frame, not of a parti
le with respe
t

to this referen
e frame.) A non-
onstant gradient of � is like a time-varying a

eleration,

and the equivalent net velo
ity is given by integrating over the time between emission and

absorption of the photon. We then have

��

�

0

=

1




Z

r� dt

=

1




2

Z

�

z

� dz

= �� ; (4.7)

where �� is the total 
hange in the gravitational potential, and we have on
e again set


 = 1. This simple formula for the gravitational redshift 
ontinues to be true in more general


ir
umstan
es. Of 
ourse, by using the Newtonian potential at all, we are restri
ting our

domain of validity to weak gravitational �elds, but that is usually 
ompletely justi�ed for

observable e�e
ts.

The gravitational redshift leads to another argument that we should 
onsider spa
etime

as 
urved. Consider the same experimental setup that we had before, now portrayed on the

spa
etime diagram on the next page.

The physi
ist on the ground emits a beam of light with wavelength �

0

from a height z

0

,

whi
h travels to the top of the tower at height z

1

. The time between when the beginning of

any single wavelength of the light is emitted and the end of that same wavelength is emitted

is �t

0

= �

0

=
, and the same time interval for the absorption is �t

1

= �

1

=
. Sin
e we imagine

that the gravitational �eld is not varying with time, the paths through spa
etime followed

by the leading and trailing edge of the single wave must be pre
isely 
ongruent. (They are

represented by some generi
 
urved paths, sin
e we do not pretend that we know just what

the paths will be.) Simple geometry tells us that the times �t

0

and �t

1

must be the same.

But of 
ourse they are not; the gravitational redshift implies that �t

1

> �t

0

. (Whi
h we


an interpret as \the 
lo
k on the tower appears to run more qui
kly.") The fault lies with
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z z
z

t

t∆
0

∆ t
1

0 1

\simple geometry"; a better des
ription of what happens is to imagine that spa
etime is


urved.

All of this should 
onstitute more than enough motivation for our 
laim that, in the

presen
e of gravity, spa
etime should be thought of as a 
urved manifold. Let us now take

this to be true and begin to set up how physi
s works in a 
urved spa
etime. The prin
iple of

equivalen
e tells us that the laws of physi
s, in small enough regions of spa
etime, look like

those of spe
ial relativity. We interpret this in the language of manifolds as the statement

that these laws, when written in Riemannian normal 
oordinates x

�

based at some point

p, are des
ribed by equations whi
h take the same form as they would in 
at spa
e. The

simplest example is that of freely-falling (una

elerated) parti
les. In 
at spa
e su
h parti
les

move in straight lines; in equations, this is expressed as the vanishing of the se
ond derivative

of the parameterized path x

�

(�):

d

2

x

�

d�

2

= 0 : (4.8)

A

ording to the EEP, exa
tly this equation should hold in 
urved spa
e, as long as the


oordinates x

�

are RNC's. What about some other 
oordinate system? As it stands, (4.8)

is not an equation between tensors. However, there is a unique tensorial equation whi
h

redu
es to (4.8) when the Christo�el symbols vanish; it is

d

2

x

�

d�

2

+ �

�

��

dx

�

d�

dx

�

d�

= 0 : (4.9)

Of 
ourse, this is simply the geodesi
 equation. In general relativity, therefore, free parti
les

move along geodesi
s; we have mentioned this before, but now you know why it is true.

As far as free parti
les go, we have argued that 
urvature of spa
etime is ne
essary to

des
ribe gravity; we have not yet shown that it is suÆ
ient. To do so, we 
an show how the

usual results of Newtonian gravity �t into the pi
ture. We de�ne the \Newtonian limit" by

three requirements: the parti
les are moving slowly (with respe
t to the speed of light), the
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gravitational �eld is weak (
an be 
onsidered a perturbation of 
at spa
e), and the �eld is

also stati
 (un
hanging with time). Let us see what these assumptions do to the geodesi


equation, taking the proper time � as an aÆne parameter. \Moving slowly" means that

dx

i

d�

<<

dt

d�

; (4.10)

so the geodesi
 equation be
omes

d

2

x

�

d�

2

+ �

�

00

 

dt

d�

!

2

= 0 : (4.11)

Sin
e the �eld is stati
, the relevant Christo�el symbols �

�

00

simplify:

�

�

00

=

1

2

g

��

(�

0

g

�0

+ �

0

g

0�

� �

�

g

00

)

= �

1

2

g

��

�

�

g

00

: (4.12)

Finally, the weakness of the gravitational �eld allows us to de
ompose the metri
 into the

Minkowski form plus a small perturbation:

g

��

= �

��

+ h

��

; jh

��

j << 1 : (4.13)

(We are working in Cartesian 
oordinates, so �

��

is the 
anoni
al form of the metri
. The

\smallness 
ondition" on the metri
 perturbation h

��

doesn't really make sense in other


oordinates.) From the de�nition of the inverse metri
, g

��

g

��

= Æ

�

�

, we �nd that to �rst

order in h,

g

��

= �

��

� h

��

; (4.14)

where h

��

= �

��

�

��

h

��

. In fa
t, we 
an use the Minkowski metri
 to raise and lower indi
es

on an obje
t of any de�nite order in h, sin
e the 
orre
tions would only 
ontribute at higher

orders.

Putting it all together, we �nd

�

�

00

= �

1

2

�

��

�

�

h

00

: (4.15)

The geodesi
 equation (4.11) is therefore

d

2

x

�

d�

2

=

1

2

�

��

�

�

h

00

 

dt

d�

!

2

: (4.16)

Using �

0

h

00

= 0, the � = 0 
omponent of this is just

d

2

t

d�

2

= 0 : (4.17)



4 GRAVITATION 106

That is,

dt

d�

is 
onstant. To examine the spa
elike 
omponents of (4.16), re
all that the

spa
elike 
omponents of �

��

are just those of a 3 � 3 identity matrix. We therefore have

d

2

x

i

d�

2

=

1

2

 

dt

d�

!

2

�

i

h

00

: (4.18)

Dividing both sides by

�

dt

d�

�

2

has the e�e
t of 
onverting the derivative on the left-hand side

from � to t, leaving us with

d

2

x

i

dt

2

=

1

2

�

i

h

00

: (4.19)

This begins to look a great deal like Newton's theory of gravitation. In fa
t, if we 
ompare

this equation to (4.4), we �nd that they are the same on
e we identify

h

00

= �2� ; (4.20)

or in other words

g

00

= �(1 + 2�) : (4.21)

Therefore, we have shown that the 
urvature of spa
etime is indeed suÆ
ient to des
ribe

gravity in the Newtonian limit, as long as the metri
 takes the form (4.21). It remains, of


ourse, to �nd �eld equations for the metri
 whi
h imply that this is the form taken, and

that for a single gravitating body we re
over the Newtonian formula

� = �

GM

r

; (4.22)

but that will 
ome soon enough.

Our next task is to show how the remaining laws of physi
s, beyond those governing freely-

falling parti
les, adapt to the 
urvature of spa
etime. The pro
edure essentially follows the

paradigm established in arguing that free parti
les move along geodesi
s. Take a law of

physi
s in 
at spa
e, traditionally written in terms of partial derivatives and the 
at metri
.

A

ording to the equivalen
e prin
iple this law will hold in the presen
e of gravity, as long

as we are in Riemannian normal 
oordinates. Translate the law into a relationship between

tensors; for example, 
hange partial derivatives to 
ovariant ones. In RNC's this version of

the law will redu
e to the 
at-spa
e one, but tensors are 
oordinate-independent obje
ts, so

the tensorial version must hold in any 
oordinate system.

This pro
edure is sometimes given a name, the Prin
iple of Covarian
e. I'm not

sure that it deserves its own name, sin
e it's really a 
onsequen
e of the EEP plus the

requirement that the laws of physi
s be independent of 
oordinates. (The requirement that

laws of physi
s be independent of 
oordinates is essentially impossible to even imagine being

untrue. Given some experiment, if one person uses one 
oordinate system to predi
t a result

and another one uses a di�erent 
oordinate system, they had better agree.) Another name
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is the \
omma-goes-to-semi
olon rule", sin
e at a typographi
al level the thing you have to

do is repla
e partial derivatives (
ommas) with 
ovariant ones (semi
olons).

We have already impli
itly used the prin
iple of 
ovarian
e (or whatever you want to


all it) in deriving the statement that free parti
les move along geodesi
s. For the most

part, it is very simple to apply it to interesting 
ases. Consider for example the formula for


onservation of energy in 
at spa
etime, �

�

T

��

= 0. The adaptation to 
urved spa
etime is

immediate:

r

�

T

��

= 0 : (4.23)

This equation expresses the 
onservation of energy in the presen
e of a gravitational �eld.

Unfortunately, life is not always so easy. Consider Maxwell's equations in spe
ial relativ-

ity, where it would seem that the prin
iple of 
ovarian
e 
an be applied in a straightforward

way. The inhomogeneous equation �

�

F

��

= 4�J

�

be
omes

r

�

F

��

= 4�J

�

; (4.24)

and the homogeneous one �

[�

F

��℄

= 0 be
omes

r

[�

F

��℄

= 0 : (4.25)

On the other hand, we 
ould also write Maxwell's equations in 
at spa
e in terms of di�er-

ential forms as

d(�F ) = 4�(�J) ; (4.26)

and

dF = 0 : (4.27)

These are already in perfe
tly tensorial form, sin
e we have shown that the exterior derivative

is a well-de�ned tensor operator regardless of what the 
onne
tion is. We therefore begin

to worry a little bit; what is the guarantee that the pro
ess of writing a law of physi
s in

tensorial form gives a unique answer? In fa
t, as we have mentioned earlier, the di�erential

forms versions of Maxwell's equations should be taken as fundamental. Nevertheless, in this


ase it happens to make no di�eren
e, sin
e in the absen
e of torsion (4.26) is identi
al

to (4.24), and (4.27) is identi
al to (4.25); the symmetri
 part of the 
onne
tion doesn't


ontribute. Similarly, the de�nition of the �eld strength tensor in terms of the potential A

�


an be written either as

F

��

= r

�

A

�

�r

�

A

�

; (4.28)

or equally well as

F = dA : (4.29)

The worry about uniqueness is a real one, however. Imagine that two ve
tor �elds X

�

and Y

�

obey a law in 
at spa
e given by

Y

�

�

�

�

�

X

�

= 0 : (4.30)
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The problem in writing this as a tensor equation should be 
lear: the partial derivatives 
an

be 
ommuted, but 
ovariant derivatives 
annot. If we simply repla
e the partials in (4.30)

by 
ovariant derivatives, we get a di�erent answer than we would if we had �rst ex
hanged

the order of the derivatives (leaving the equation in 
at spa
e invariant) and then repla
ed

them. The di�eren
e is given by

Y

�

r

�

r

�

X

�

� Y

�

r

�

r

�

X

�

= �R

��

Y

�

X

�

: (4.31)

The pres
ription for generalizing laws from 
at to 
urved spa
etimes does not guide us in


hoosing the order of the derivatives, and therefore is ambiguous about whether a term

su
h as that in (4.31) should appear in the presen
e of gravity. (The problem of ordering


ovariant derivatives is similar to the problem of operator-ordering ambiguities in quantum

me
hani
s.)

In the literature you 
an �nd various pres
riptions for dealing with ambiguities su
h as

this, most of whi
h are sensible pie
es of advi
e su
h as remembering to preserve gauge

invarian
e for ele
tromagnetism. But deep down the real answer is that there is no way to

resolve these problems by pure thought alone; the fa
t is that there may be more than one

way to adapt a law of physi
s to 
urved spa
e, and ultimately only experiment 
an de
ide

between the alternatives.

In fa
t, let us be honest about the prin
iple of equivalen
e: it serves as a useful guideline,

but it does not deserve to be treated as a fundamental prin
iple of nature. From the modern

point of view, we do not expe
t the EEP to be rigorously true. Consider the following

alternative version of (4.24):

r

�

[(1 + �R)F

��

℄ = 4�J

�

; (4.32)

where R is the Ri

i s
alar and � is some 
oupling 
onstant. If this equation 
orre
tly

des
ribed ele
trodynami
s in 
urved spa
etime, it would be possible to measure R even in

an arbitrarily small region, by doing experiments with 
harged parti
les. The equivalen
e

prin
iple therefore demands that � = 0. But otherwise this is a perfe
tly respe
table equa-

tion, 
onsistent with 
harge 
onservation and other desirable features of ele
tromagnetism,

whi
h redu
es to the usual equation in 
at spa
e. Indeed, in a world governed by quantum

me
hani
s we expe
t all possible 
ouplings between di�erent �elds (su
h as gravity and ele
-

tromagnetism) that are 
onsistent with the symmetries of the theory (in this 
ase, gauge

invarian
e). So why is it reasonable to set � = 0? The real reason is one of s
ales. Noti
e that

the Ri

i tensor involves se
ond derivatives of the metri
, whi
h is dimensionless, so R has

dimensions of (length)

�2

(with 
 = 1). Therefore � must have dimensions of (length)

2

. But

sin
e the 
oupling represented by � is of gravitational origin, the only reasonable expe
tation

for the relevant length s
ale is

� � l

2

P

; (4.33)
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where l

P

is the Plan
k length

l

P

=

 

G�h




3

!

1=2

= 1:6 � 10

�33


m ; (4.34)

where �h is of 
ourse Plan
k's 
onstant. So the length s
ale 
orresponding to this 
oupling is

extremely small, and for any 
on
eivable experiment we expe
t the typi
al s
ale of variation

for the gravitational �eld to be mu
h larger. Therefore the reason why this equivalen
e-

prin
iple-violating term 
an be safely ignored is simply be
ause �R is probably a fantasti
ally

small number, far out of the rea
h of any experiment. On the other hand, we might as well

keep an open mind, sin
e our expe
tations are not always borne out by observation.

Having established how physi
al laws govern the behavior of �elds and obje
ts in a 
urved

spa
etime, we 
an 
omplete the establishment of general relativity proper by introdu
ing

Einstein's �eld equations, whi
h govern how the metri
 responds to energy and momentum.

We will a
tually do this in two ways: �rst by an informal argument 
lose to what Einstein

himself was thinking, and then by starting with an a
tion and deriving the 
orresponding

equations of motion.

The informal argument begins with the realization that we would like to �nd an equation

whi
h supersedes the Poisson equation for the Newtonian potential:

r

2

� = 4�G� ; (4.35)

where r

2

= Æ

ij

�

i

�

j

is the Lapla
ian in spa
e and � is the mass density. (The expli
it form of

� given in (4.22) is one solution of (4.35), for the 
ase of a pointlike mass distribution.) What


hara
teristi
s should our sought-after equation possess? On the left-hand side of (4.35) we

have a se
ond-order di�erential operator a
ting on the gravitational potential, and on the

right-hand side a measure of the mass distribution. A relativisti
 generalization should take

the form of an equation between tensors. We know what the tensor generalization of the mass

density is; it's the energy-momentum tensor T

��

. The gravitational potential, meanwhile,

should get repla
ed by the metri
 tensor. We might therefore guess that our new equation

will have T

��

set proportional to some tensor whi
h is se
ond-order in derivatives of the

metri
. In fa
t, using (4.21) for the metri
 in the Newtonian limit and T

00

= �, we see that

in this limit we are looking for an equation that predi
ts

r

2

h

00

= �8�GT

00

; (4.36)

but of 
ourse we want it to be 
ompletely tensorial.

The left-hand side of (4.36) does not obviously generalize to a tensor. The �rst 
hoi
e

might be to a
t the D'Alembertian 2 = r

�

r

�

on the metri
 g

��

, but this is automati
ally

zero by metri
 
ompatibility. Fortunately, there is an obvious quantity whi
h is not zero
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and is 
onstru
ted from se
ond derivatives (and �rst derivatives) of the metri
: the Riemann

tensor R

�

���

. It doesn't have the right number of indi
es, but we 
an 
ontra
t it to form the

Ri

i tensor R

��

, whi
h does (and is symmetri
 to boot). It is therefore reasonable to guess

that the gravitational �eld equations are

R

��

= �T

��

; (4.37)

for some 
onstant �. In fa
t, Einstein did suggest this equation at one point. There is a prob-

lem, unfortunately, with 
onservation of energy. A

ording to the Prin
iple of Equivalen
e,

the statement of energy-momentum 
onservation in 
urved spa
etime should be

r

�

T

��

= 0 ; (4.38)

whi
h would then imply

r

�

R

��

= 0 : (4.39)

This is 
ertainly not true in an arbitrary geometry; we have seen from the Bian
hi identity

(3.94) that

r

�

R

��

=

1

2

r

�

R : (4.40)

But our proposed �eld equation implies that R = �g

��

T

��

= �T , so taking these together

we have

r

�

T = 0 : (4.41)

The 
ovariant derivative of a s
alar is just the partial derivative, so (4.41) is telling us that T

is 
onstant throughout spa
etime. This is highly implausible, sin
e T = 0 in va
uum while

T > 0 in matter. We have to try harder.

(A
tually we are 
heating slightly, in taking the equation r

�

T

��

= 0 so seriously. If as

we said, the equivalen
e prin
iple is only an approximate guide, we 
ould imagine that there

are nonzero terms on the right-hand side involving the 
urvature tensor. Later we will be

more pre
ise and argue that they are stri
tly zero.)

Of 
ourse we don't have to try mu
h harder, sin
e we already know of a symmetri
 (0; 2)

tensor, 
onstru
ted from the Ri

i tensor, whi
h is automati
ally 
onserved: the Einstein

tensor

G

��

= R

��

�

1

2

Rg

��

; (4.42)

whi
h always obeys r

�

G

��

= 0. We are therefore led to propose

G

��

= �T

��

(4.43)

as a �eld equation for the metri
. This equation satis�es all of the obvious requirements;

the right-hand side is a 
ovariant expression of the energy and momentum density in the
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form of a symmetri
 and 
onserved (0; 2) tensor, while the left-hand side is a symmetri
 and


onserved (0; 2) tensor 
onstru
ted from the metri
 and its �rst and se
ond derivatives. It

only remains to see whether it a
tually reprodu
es gravity as we know it.

To answer this, note that 
ontra
ting both sides of (4.43) yields (in four dimensions)

R = ��T ; (4.44)

and using this we 
an rewrite (4.43) as

R

��

= �(T

��

�

1

2

Tg

��

) : (4.45)

This is the same equation, just written slightly di�erently. We would like to see if it predi
ts

Newtonian gravity in the weak-�eld, time-independent, slowly-moving-parti
les limit. In

this limit the rest energy � = T

00

will be mu
h larger than the other terms in T

��

, so we

want to fo
us on the � = 0, � = 0 
omponent of (4.45). In the weak-�eld limit, we write (in

a

ordan
e with (4.13) and (4.14))

g

00

= �1 + h

00

;

g

00

= �1� h

00

: (4.46)

The tra
e of the energy-momentum tensor, to lowest nontrivial order, is

T = g

00

T

00

= �T

00

: (4.47)

Plugging this into (4.45), we get

R

00

=

1

2

�T

00

: (4.48)

This is an equation relating derivatives of the metri
 to the energy density. To �nd the

expli
it expression in terms of the metri
, we need to evaluate R

00

= R

�

0�0

. In fa
t we only

need R

i

0i0

, sin
e R

0

000

= 0. We have

R

i

0j0

= �

j

�

i

00

� �

0

�

i

j0

+ �

i

j�

�

�

00

� �

i

0�

�

�

j0

: (4.49)

The se
ond term here is a time derivative, whi
h vanishes for stati
 �elds. The third and

fourth terms are of the form (�)

2

, and sin
e � is �rst-order in the metri
 perturbation these


ontribute only at se
ond order, and 
an be negle
ted. We are left with R

i

0j0

= �

j

�

i

00

. From

this we get

R

00

= R

i

0i0

= �

i

�

1

2

g

i�

(�

0

g

�0

+ �

0

g

0�

� �

�

g

00

)

�

= �

1

2

�

ij

�

i

�

j

h

00
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= �

1

2

r

2

h

00

: (4.50)

Comparing to (4.48), we see that the 00 
omponent of (4.43) in the Newtonian limit predi
ts

r

2

h

00

= ��T

00

: (4.51)

But this is exa
tly (4.36), if we set � = 8�G.

So our guess seems to have worked out. With the normalization �xed by 
omparison

with the Newtonian limit, we 
an present Einstein's equations for general relativity:

R

��

�

1

2

Rg

��

= 8�GT

��

: (4.52)

These tell us how the 
urvature of spa
etime rea
ts to the presen
e of energy-momentum.

Einstein, you may have heard, thought that the left-hand side was ni
e and geometri
al,

while the right-hand side was somewhat less 
ompelling.

Einstein's equations may be thought of as se
ond-order di�erential equations for the

metri
 tensor �eld g

��

. There are ten independent equations (sin
e both sides are symmetri


two-index tensors), whi
h seems to be exa
tly right for the ten unknown fun
tions of the

metri
 
omponents. However, the Bian
hi identityr

�

G

��

= 0 represents four 
onstraints on

the fun
tions R

��

, so there are only six truly independent equations in (4.52). In fa
t this is

appropriate, sin
e if a metri
 is a solution to Einstein's equation in one 
oordinate system

x

�

it should also be a solution in any other 
oordinate system x

�

0

. This means that there are

four unphysi
al degrees of freedom in g

��

(represented by the four fun
tions x

�

0

(x

�

)), and

we should expe
t that Einstein's equations only 
onstrain the six 
oordinate-independent

degrees of freedom.

As di�erential equations, these are extremely 
ompli
ated; the Ri

i s
alar and tensor are


ontra
tions of the Riemann tensor, whi
h involves derivatives and produ
ts of the Christo�el

symbols, whi
h in turn involve the inverse metri
 and derivatives of the metri
. Furthermore,

the energy-momentum tensor T

��

will generally involve the metri
 as well. The equations

are also nonlinear, so that two known solutions 
annot be superposed to �nd a third. It

is therefore very diÆ
ult to solve Einstein's equations in any sort of generality, and it is

usually ne
essary to make some simplifying assumptions. Even in va
uum, where we set the

energy-momentum tensor to zero, the resulting equations (from (4.45))

R

��

= 0 (4.53)


an be very diÆ
ult to solve. The most popular sort of simplifying assumption is that the

metri
 has a signi�
ant degree of symmetry, and we will talk later on about how symmetries

of the metri
 make life easier.

The nonlinearity of general relativity is worth remarking on. In Newtonian gravity the

potential due to two point masses is simply the sum of the potentials for ea
h mass, but
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learly this does not 
arry over to general relativity (outside the weak-�eld limit). There is

a physi
al reason for this, namely that in GR the gravitational �eld 
ouples to itself. This


an be thought of as a 
onsequen
e of the equivalen
e prin
iple | if gravitation did not


ouple to itself, a \gravitational atom" (two parti
les bound by their mutual gravitational

attra
tion) would have a di�erent inertial mass (due to the negative binding energy) than

gravitational mass. From a parti
le physi
s point of view this 
an be expressed in terms of

Feynman diagrams. The ele
tromagneti
 intera
tion between two ele
trons 
an be thought

of as due to ex
hange of a virtual photon:

e

e-

-

photon

But there is no diagram in whi
h two photons ex
hange another photon between themselves;

ele
tromagnetism is linear. The gravitational intera
tion, meanwhile, 
an be thought of

as due to ex
hange of a virtual graviton (a quantized perturbation of the metri
). The

nonlinearity manifests itself as the fa
t that both ele
trons and gravitons (and anything

else) 
an ex
hange virtual gravitons, and therefore exert a gravitational for
e:

e

e-

-

graviton gravitons

There is nothing profound about this feature of gravity; it is shared by most gauge theories,

su
h as quantum 
hromodynami
s, the theory of the strong intera
tions. (Ele
tromagnetism

is a
tually the ex
eption; the linearity 
an be tra
ed to the fa
t that the relevant gauge group,

U(1), is abelian.) But it does represent a departure from the Newtonian theory. (Of 
ourse

this quantum me
hani
al language of Feynman diagrams is somewhat inappropriate for GR,

whi
h has not [yet℄ been su

essfully quantized, but the diagrams are just a 
onvenient

shorthand for remembering what intera
tions exist in the theory.)



4 GRAVITATION 114

To in
rease your 
on�den
e that Einstein's equations as we have derived them are indeed

the 
orre
t �eld equations for the metri
, let's see how they 
an be derived from a more

modern viewpoint, starting from an a
tion prin
iple. (In fa
t the equations were �rst derived

by Hilbert, not Einstein, and Hilbert did it using the a
tion prin
iple. But he had been

inspired by Einstein's previous papers on the subje
t, and Einstein himself derived the

equations independently, so they are rightly named after Einstein. The a
tion, however, is

rightly 
alled the Hilbert a
tion.) The a
tion should be the integral over spa
etime of a

Lagrange density (\Lagrangian" for short, although stri
tly speaking the Lagrangian is the

integral over spa
e of the Lagrange density):

S

H

=

Z

d

n

xL

H

: (4.54)

The Lagrange density is a tensor density, whi
h 
an be written as

p

�g times a s
alar. What

s
alars 
an we make out of the metri
? Sin
e we know that the metri
 
an be set equal to

its 
anoni
al form and its �rst derivatives set to zero at any one point, any nontrivial s
alar

must involve at least se
ond derivatives of the metri
. The Riemann tensor is of 
ourse

made from se
ond derivatives of the metri
, and we argued earlier that the only independent

s
alar we 
ould 
onstru
t from the Riemann tensor was the Ri

i s
alar R. What we did not

show, but is nevertheless true, is that any nontrivial tensor made from the metri
 and its

�rst and se
ond derivatives 
an be expressed in terms of the metri
 and the Riemann tensor.

Therefore, the only independent s
alar 
onstru
ted from the metri
, whi
h is no higher than

se
ond order in its derivatives, is the Ri

i s
alar. Hilbert �gured that this was therefore the

simplest possible 
hoi
e for a Lagrangian, and proposed

L

H

=

p

�gR : (4.55)

The equations of motion should 
ome from varying the a
tion with respe
t to the metri
.

In fa
t let us 
onsider variations with respe
t to the inverse metri
 g

��

, whi
h are slightly

easier but give an equivalent set of equations. Using R = g

��

R

��

, in general we will have

ÆS =

Z

d

n

x

h

p

�gg

��

ÆR

��

+

p

�gR

��

Æg

��

+RÆ

p

�g

i

= (ÆS)

1

+ (ÆS)

2

+ (ÆS)

3

: (4.56)

The se
ond term (ÆS)

2

is already in the form of some expression times Æg

��

; let's examine

the others more 
losely.

Re
all that the Ri

i tensor is the 
ontra
tion of the Riemann tensor, whi
h is given by

R

�

���

= �

�

�

�

��

+ �

�

��

�

�

��

� (�$ �) : (4.57)

The variation of this with respe
t the metri
 
an be found �rst varying the 
onne
tion with

respe
t to the metri
, and then substituting into this expression. Let us however 
onsider
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arbitrary variations of the 
onne
tion, by repla
ing

�

�

��

! �

�

��

+ Æ�

�

��

: (4.58)

The variation Æ�

�

��

is the di�eren
e of two 
onne
tions, and therefore is itself a tensor. We


an thus take its 
ovariant derivative,

r

�

(Æ�

�

��

) = �

�

(Æ�

�

��

) + �

�

��

Æ�

�

��

� �

�

��

Æ�

�

��

� �

�

��

Æ�

�

��

: (4.59)

Given this expression (and a small amount of labor) it is easy to show that

ÆR

�

���

= r

�

(Æ�

�

��

)�r

�

(Æ�

�

��

) : (4.60)

You 
an 
he
k this yourself. Therefore, the 
ontribution of the �rst term in (4.56) to ÆS 
an

be written

(ÆS)

1

=

Z

d

n

x

p

�g g

��

h

r

�

(Æ�

�

��

)�r

�

(Æ�

�

��

)

i

=

Z

d

n

x

p

�g r

�

h

g

��

(Æ�

�

��

)� g

��

(Æ�

�

��

)

i

; (4.61)

where we have used metri
 
ompatibility and relabeled some dummy indi
es. But now we

have the integral with respe
t to the natural volume element of the 
ovariant divergen
e of

a ve
tor; by Stokes's theorem, this is equal to a boundary 
ontribution at in�nity whi
h we


an set to zero by making the variation vanish at in�nity. (We haven't a
tually shown that

Stokes's theorem, as mentioned earlier in terms of di�erential forms, 
an be thought of this

way, but you 
an easily 
onvin
e yourself it's true.) Therefore this term 
ontributes nothing

to the total variation.

To make sense of the (ÆS)

3

term we need to use the following fa
t, true for any matrix

M :

Tr(lnM) = ln(detM) : (4.62)

Here, lnM is de�ned by exp(lnM) = M . (For numbers this is obvious, for matri
es it's a

little less straightforward.) The variation of this identity yields

Tr(M

�1

ÆM) =

1

detM

Æ(detM) : (4.63)

Here we have used the 
y
li
 property of the tra
e to allow us to ignore the fa
t that M

�1

and ÆM may not 
ommute. Now we would like to apply this to the inverse metri
,M = g

��

.

Then detM = g

�1

(where g = det g

��

), and

Æ(g

�1

) =

1

g

g

��

Æg

��

: (4.64)
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Now we 
an just plug in:

Æ

p

�g = Æ[(�g

�1

)

�1=2

℄

= �

1

2

(�g

�1

)

�3=2

Æ(�g

�1

)

= �

1

2

p

�gg

��

Æg

��

: (4.65)

Hearkening ba
k to (4.56), and remembering that (ÆS)

1

does not 
ontribute, we �nd

ÆS =

Z

d

n

x

p

�g

�

R

��

�

1

2

Rg

��

�

Æg

��

: (4.66)

This should vanish for arbitrary variations, so we are led to Einstein's equations in va
uum:

1

p

�g

ÆS

Æg

��

= R

��

�

1

2

Rg

��

= 0 : (4.67)

The fa
t that this simple a
tion leads to the same va
uum �eld equations as we had

previously arrived at by more informal arguments 
ertainly reassures us that we are doing

something right. What we would really like, however, is to get the non-va
uum �eld equations

as well. That means we 
onsider an a
tion of the form

S =

1

8�G

S

H

+ S

M

; (4.68)

where S

M

is the a
tion for matter, and we have pres
iently normalized the gravitational

a
tion (although the proper normalization is somewhat 
onvention-dependent). Following

through the same pro
edure as above leads to

1

p

�g

ÆS

Æg

��

=

1

8�G

�

R

��

�

1

2

Rg

��

�

+

1

p

�g

ÆS

M

Æg

��

= 0 ; (4.69)

and we re
over Einstein's equations if we 
an set

T

��

= �

1

p

�g

ÆS

M

Æg

��

: (4.70)

What makes us think that we 
an make su
h an identi�
ation? In fa
t (4.70) turns out to

be the best way to de�ne a symmetri
 energy-momentum tensor. The tri
ky part is to show

that it is 
onserved, whi
h is in fa
t automati
ally true, but whi
h we will not justify until

the next se
tion.

We say that (4.70) provides the \best" de�nition of the energy-momentum tensor be
ause

it is not the only one you will �nd. In 
at Minkowski spa
e, there is an alternative de�ni-

tion whi
h is sometimes given in books on ele
tromagnetism or �eld theory. In this 
ontext
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energy-momentum 
onservation arises as a 
onsequen
e of symmetry of the Lagrangian un-

der spa
etime translations. Noether's theorem states that every symmetry of a Lagrangian

implies the existen
e of a 
onservation law; invarian
e under the four spa
etime translations

leads to a tensor S

��

whi
h obeys �

�

S

��

= 0 (four relations, one for ea
h value of �). The

details 
an be found in Wald or in any number of �eld theory books. Applying Noether's

pro
edure to a Lagrangian whi
h depends on some �elds  

i

and their �rst derivatives �

�

 

i

,

we obtain

S

��

=

ÆL

Æ(�

�

 

i

)

�

�

 

i

� �

��

L ; (4.71)

where a sum over i is implied. You 
an 
he
k that this tensor is 
onserved by virtue of the

equations of motion of the matter �elds. S

��

often goes by the name \
anoni
al energy-

momentum tensor"; however, there are a number of reasons why it is more 
onvenient for

us to use (4.70). First and foremost, (4.70) is in fa
t what appears on the right hand side of

Einstein's equations when they are derived from an a
tion, and it is not always possible to

generalize (4.71) to 
urved spa
etime. But even in 
at spa
e (4.70) has its advantages; it is

manifestly symmetri
, and also guaranteed to be gauge invariant, neither of whi
h is true for

(4.71). We will therefore sti
k with (4.70) as the de�nition of the energy-momentum tensor.

Sometimes it is useful to think about Einstein's equations without spe
ifying the theory

of matter from whi
h T

��

is derived. This leaves us with a great deal of arbitrariness; 
onsider

for example the question \What metri
s obey Einstein's equations?" In the absen
e of some


onstraints on T

��

, the answer is \any metri
 at all"; simply take the metri
 of your 
hoi
e,


ompute the Einstein tensor G

��

for this metri
, and then demand that T

��

be equal to G

��

.

(It will automati
ally be 
onserved, by the Bian
hi identity.) Our real 
on
ern is with the

existen
e of solutions to Einstein's equations in the presen
e of \realisti
" sour
es of energy

and momentum, whatever that means. The most 
ommon property that is demanded of

T

��

is that it represent positive energy densities | no negative masses are allowed. In a

lo
ally inertial frame this requirement 
an be stated as � = T

00

� 0. To turn this into a


oordinate-independent statement, we ask that

T

��

V

�

V

�

� 0 ; for all timelike ve
tors V

�

: (4.72)

This is known as the Weak Energy Condition, or WEC. It seems like a fairly reasonable

requirement, and many of the important theorems about solutions to general relativity (su
h

as the singularity theorems of Hawking and Penrose) rely on this 
ondition or something

very 
lose to it. Unfortunately it is not set in stone; indeed, it is straightforward to invent

otherwise respe
table 
lassi
al �eld theories whi
h violate the WEC, and almost impossible

to invent a quantum �eld theory whi
h obeys it. Nevertheless, it is legitimate to assume

that the WEC holds in all but the most extreme 
onditions. (There are also stronger energy


onditions, but they are even less true than the WEC, and we won't dwell on them.)
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We have now justi�ed Einstein's equations in two di�erent ways: as the natural 
ovariant

generalization of Poisson's equation for the Newtonian gravitational potential, and as the

result of varying the simplest possible a
tion we 
ould invent for the metri
. The rest of

the 
ourse will be an exploration of the 
onsequen
es of these equations, but before we start

on that road let us brie
y explore ways in whi
h the equations 
ould be modi�ed. There

are an un
ountable number of su
h ways, but we will 
onsider four di�erent possibilities:

the introdu
tion of a 
osmologi
al 
onstant, higher-order terms in the a
tion, gravitational

s
alar �elds, and a nonvanishing torsion tensor.

The �rst possibility is the 
osmologi
al 
onstant; George Gamow has quoted Einstein as


alling this the biggest mistake of his life. Re
all that in our sear
h for the simplest possible

a
tion for gravity we noted that any nontrivial s
alar had to be of at least se
ond order in

derivatives of the metri
; at lower order all we 
an 
reate is a 
onstant. Although a 
onstant

does not by itself lead to very interesting dynami
s, it has an important e�e
t if we add it

to the 
onventional Hilbert a
tion. We therefore 
onsider an a
tion given by

S =

Z

d

n

x

p

�g(R� 2�) ; (4.73)

where � is some 
onstant. The resulting �eld equations are

R

��

�

1

2

Rg

��

+ �g

��

= 0 ; (4.74)

and of 
ourse there would be an energy-momentum tensor on the right hand side if we had

in
luded an a
tion for matter. � is the 
osmologi
al 
onstant; it was originally introdu
ed

by Einstein after it be
ame 
lear that there were no solutions to his equations representing

a stati
 
osmology (a universe un
hanging with time on large s
ales) with a nonzero matter


ontent. If the 
osmologi
al 
onstant is tuned just right, it is possible to �nd a stati
 solution,

but it is unstable to small perturbations. Furthermore, on
e Hubble demonstrated that the

universe is expanding, it be
ame less important to �nd stati
 solutions, and Einstein reje
ted

his suggestion. Like Rasputin, however, the 
osmologi
al 
onstant has proven diÆ
ult to kill

o�. If we like we 
an move the additional term in (4.74) to the right hand side, and think of

it as a kind of energy-momentum tensor, with T

��

= ��g

��

(it is automati
ally 
onserved

by metri
 
ompatibility). Then � 
an be interpreted as the \energy density of the va
uum,"

a sour
e of energy and momentum that is present even in the absen
e of matter �elds. This

interpretation is important be
ause quantum �eld theory predi
ts that the va
uum should

have some sort of energy and momentum. In ordinary quantum me
hani
s, an harmoni


os
illator with frequen
y ! and minimum 
lassi
al energy E

0

= 0 upon quantization has a

ground state with energy E

0

=

1

2

�h!. A quantized �eld 
an be thought of as a 
olle
tion of

an in�nite number of harmoni
 os
illators, and ea
h mode 
ontributes to the ground state

energy. The result is of 
ourse in�nite, and must be appropriately regularized, for example
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by introdu
ing a 
uto� at high frequen
ies. The �nal va
uum energy, whi
h is the regularized

sum of the energies of the ground state os
illations of all the �elds of the theory, has no good

reason to be zero and in fa
t would be expe
ted to have a natural s
ale

� � m

4

P

; (4.75)

where the Plan
k mass m

P

is approximately 10

19

GeV, or 10

�5

grams. Observations of the

universe on large s
ales allow us to 
onstrain the a
tual value of �, whi
h turns out to be

smaller than (4.75) by at least a fa
tor of 10

120

. This is the largest known dis
repan
y between

theoreti
al estimate and observational 
onstraint in physi
s, and 
onvin
es many people that

the \
osmologi
al 
onstant problem" is one of the most important unsolved problems today.

On the other hand the observations do not tell us that � is stri
tly zero, and in fa
t allow

values that 
an have important 
onsequen
es for the evolution of the universe. This mistake

of Einstein's therefore 
ontinues to bedevil both physi
ists, who would like to understand

why it is so small, and astronomers, who would like to determine whether it is really small

enough to be ignored.

A somewhat less intriguing generalization of the Hilbert a
tion would be to in
lude s
alars

of more than se
ond order in derivatives of the metri
. We 
ould imagine an a
tion of the

form

S =

Z

d

n

x

p

�g(R+ �

1

R

2

+ �

2

R

��

R

��

+ �

3

g

��

r

�

Rr

�

R+ � � �) ; (4.76)

where the �'s are 
oupling 
onstants and the dots represent every other s
alar we 
an make

from the 
urvature tensor, its 
ontra
tions, and its derivatives. Traditionally, su
h terms

have been negle
ted on the reasonable grounds that they merely 
ompli
ate a theory whi
h

is already both aestheti
ally pleasing and empiri
ally su

essful. However, there are at

least three more substantive reasons for this negle
t. First, as we shall see below, Einstein's

equations lead to a well-posed initial value problem for the metri
, in whi
h \
oordinates" and

\momenta" spe
i�ed at an initial time 
an be used to predi
t future evolution. With higher-

derivative terms, we would require not only those data, but also some number of derivatives

of the momenta. Se
ond, the main sour
e of dissatisfa
tion with general relativity on the part

of parti
le physi
ists is that it 
annot be renormalized (as far as we know), and Lagrangians

with higher derivatives tend generally to make theories less renormalizable rather than more.

Third, by the same arguments we used above when speaking about the limitations of the

prin
iple of equivalen
e, the extra terms in (4.76) should be suppressed (by powers of the

Plan
k mass to some power) relative to the usual Hilbert term, and therefore would not be

expe
ted to be of any pra
ti
al importan
e to the low-energy world. None of these reasons

are 
ompletely persuasive, and indeed people 
ontinue to 
onsider su
h theories, but for the

most part these models do not attra
t a great deal of attention.

A set of models whi
h does attra
t attention are known as s
alar-tensor theories of

gravity, sin
e they involve both the metri
 tensor g

��

and a fundamental s
alar �eld, �. The
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a
tion 
an be written

S =

Z

d

n

x

p

�g

�

f(�)R +

1

2

g

��

(�

�

�)(�

�

�)� V (�)

�

; (4.77)

where f(�) and V (�) are fun
tions whi
h de�ne the theory. Re
all from (4.68) that the


oeÆ
ient of the Ri

i s
alar in 
onventional GR is proportional to the inverse of Newton's


onstant G. In s
alar-tensor theories, then, where this 
oeÆ
ient is repla
ed by some fun
tion

of a �eld whi
h 
an vary throughout spa
etime, the \strength" of gravity (as measured by

the lo
al value of Newton's 
onstant) will be di�erent from pla
e to pla
e and time to time.

In fa
t the most famous s
alar-tensor theory, invented by Brans and Di
ke and now named

after them, was inspired by a suggestion of Dira
's that the gravitational 
onstant varies

with time. Dira
 had noti
ed that there were some interesting numeri
al 
oin
iden
es one


ould dis
over by taking 
ombinations of 
osmologi
al numbers su
h as the Hubble 
onstant

H

0

(a measure of the expansion rate of the universe) and typi
al parti
le-physi
s parameters

su
h as the mass of the pion, m

�

. For example,

m

3

�

H

0

�


G

�h

2

: (4.78)

If we assume for the moment that this relation is not simply an a

ident, we are fa
ed with

the problem that the Hubble \
onstant" a
tually 
hanges with time (in most 
osmologi
al

models), while the other quantities 
onventionally do not. Dira
 therefore proposed that in

fa
t G varied with time, in su
h a way as to maintain (4.78); satisfying this proposal was

the motivation of Brans and Di
ke. These days, experimental test of general relativity are

suÆ
iently pre
ise that we 
an state with 
on�den
e that, if Brans-Di
ke theory is 
orre
t,

the predi
ted 
hange in G over spa
e and time must be very small, mu
h slower than that

ne
essary to satisfy Dira
's hypothesis. (See Weinberg for details on Brans-Di
ke theory

and experimental tests.) Nevertheless there is still a great deal of work being done on other

kinds of s
alar-tensor theories, whi
h turn out to be vital in superstring theory and may

have important 
onsequen
es in the very early universe.

As a �nal alternative to general relativity, we should mention the possibility that the


onne
tion really is not derived from the metri
, but in fa
t has an independent existen
e as a

fundamental �eld. We will leave it as an exer
ise for you to show that it is possible to 
onsider

the 
onventional a
tion for general relativity but treat it as a fun
tion of both the metri


g

��

and a torsion-free 
onne
tion �

�

��

, and the equations of motion derived from varying

su
h an a
tion with respe
t to the 
onne
tion imply that �

�

��

is a
tually the Christo�el


onne
tion asso
iated with g

��

. We 
ould drop the demand that the 
onne
tion be torsion-

free, in whi
h 
ase the torsion tensor 
ould lead to additional propagating degrees of freedom.

Without going into details, the basi
 reason why su
h theories do not re
eive mu
h attention

is simply be
ause the torsion is itself a tensor; there is nothing to distinguish it from other,
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\non-gravitational" tensor �elds. Thus, we do not really lose any generality by 
onsidering

theories of torsion-free 
onne
tions (whi
h lead to GR) plus any number of tensor �elds,

whi
h we 
an name what we like.

With the possibility in mind that one of these alternatives (or, more likely, something

we have not yet thought of) is a
tually realized in nature, for the rest of the 
ourse we will

work under the assumption that general relativity as based on Einstein's equations or the

Hilbert a
tion is the 
orre
t theory, and work out its 
onsequen
es. These 
onsequen
es, of


ourse, are 
onstituted by the solutions to Einstein's equations for various sour
es of energy

and momentum, and the behavior of test parti
les in these solutions. Before 
onsidering

spe
i�
 solutions in detail, lets look more abstra
tly at the initial-value problem in general

relativity.

In 
lassi
al Newtonian me
hani
s, the behavior of a single parti
le is of 
ourse governed

by f = ma. If the parti
le is moving under the in
uen
e of some potential energy �eld �(x),

then the for
e is f = �r�, and the parti
le obeys

m

d

2

x

i

dt

2

= ��

i

� : (4.79)

This is a se
ond-order di�erential equation for x

i

(t), whi
h we 
an re
ast as a system of two


oupled �rst-order equations by introdu
ing the momentum p:

dp

i

dt

= ��

i

�

dx

i

dt

=

1

m

p

i

: (4.80)

The initial-value problem is simply the pro
edure of spe
ifying a \state" (x

i

; p

i

) whi
h serves

as a boundary 
ondition with whi
h (4.80) 
an be uniquely solved. You may think of (4.80)

as allowing you, on
e you are given the 
oordinates and momenta at some time t, to evolve

them forward an in�nitesimal amount to a time t+ Æt, and iterate this pro
edure to obtain

the entire solution.

We would like to formulate the analogous problem in general relativity. Einstein's equa-

tions G

��

= 8�GT

��

are of 
ourse 
ovariant; they don't single out a preferred notion of \time"

through whi
h a state 
an evolve. Nevertheless, we 
an by hand pi
k a spa
elike hypersurfa
e

(or \sli
e") �, spe
ify initial data on that hypersurfa
e, and see if we 
an evolve uniquely

from it to a hypersurfa
e in the future. (\Hyper" be
ause a 
onstant-time sli
e in four di-

mensions will be three-dimensional, whereas \surfa
es" are 
onventionally two-dimensional.)

This pro
ess does violen
e to the manifest 
ovarian
e of the theory, but if we are 
areful we

should wind up with a formulation that is equivalent to solving Einstein's equations all at

on
e throughout spa
etime.

Sin
e the metri
 is the fundamental variable, our �rst guess is that we should 
onsider

the values g

��

j

�

of the metri
 on our hypersurfa
e to be the \
oordinates" and the time
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t

derivatives �

t

g

��

j

�

(with respe
t to some spe
i�ed time 
oordinate) to be the \momenta",

whi
h together spe
ify the state. (There will also be 
oordinates and momenta for the matter

�elds, whi
h we will not 
onsider expli
itly.) In fa
t the equations G

��

= 8�GT

��

do involve

se
ond derivatives of the metri
 with respe
t to time (sin
e the 
onne
tion involves �rst

derivatives of the metri
 and the Einstein tensor involves �rst derivatives of the 
onne
tion),

so we seem to be on the right tra
k. However, the Bian
hi identity tells us that r

�

G

��

= 0.

We 
an rewrite this equation as

�

0

G

0�

= ��

i

G

i�

� �

�

��

G

��

� �

�

��

G

��

: (4.81)

A 
lose look at the right hand side reveals that there are no third-order time derivatives;

therefore there 
annot be any on the left hand side. Thus, although G

��

as a whole involves

se
ond-order time derivatives of the metri
, the spe
i�
 
omponents G

0�

do not. Of the ten

independent 
omponents in Einstein's equations, the four represented by

G

0�

= 8�GT

0�

(4.82)


annot be used to evolve the initial data (g

��

; �

t

g

��

)

�

. Rather, they serve as 
onstraints

on this initial data; we are not free to spe
ify any 
ombination of the metri
 and its time

derivatives on the hypersurfa
e �, sin
e they must obey the relations (4.82). The remaining

equations,

G

ij

= 8�GT

ij

(4.83)

are the dynami
al evolution equations for the metri
. Of 
ourse, these are only six equations

for the ten unknown fun
tions g

��

(x

�

), so the solution will inevitably involve a fourfold

ambiguity. This is simply the freedom that we have already mentioned, to 
hoose the four


oordinate fun
tions throughout spa
etime.

It is a straightforward but unenlightening exer
ise to sift through (4.83) to �nd that

not all se
ond time derivatives of the metri
 appear. In fa
t we �nd that �

2

t

g

ij

appears in

(4.83), but not �

2

t

g

0�

. Therefore a \state" in general relativity will 
onsist of a spe
i�
ation
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of the spa
elike 
omponents of the metri
 g

ij

j

�

and their �rst time derivatives �

t

g

ij

j

�

on the

hypersurfa
e �, from whi
h we 
an determine the future evolution using (4.83), up to an

unavoidable ambiguity in �xing the remaining 
omponents g

0�

. The situation is pre
isely

analogous to that in ele
tromagnetism, where we know that no amount of initial data 
an

suÆ
e to determine the evolution uniquely sin
e there will always be the freedom to perform a

gauge transformation A

�

! A

�

+�

�

�. In general relativity, then, 
oordinate transformations

play a role reminis
ent of gauge transformations in ele
tromagnetism, in that they introdu
e

ambiguity into the time evolution.

One way to 
ope with this problem is to simply \
hoose a gauge." In ele
tromagnetism

this means to pla
e a 
ondition on the ve
tor potential A

�

, whi
h will restri
t our freedom

to perform gauge transformations. For example we 
an 
hoose Lorentz gauge, in whi
h

r

�

A

�

= 0, or temporal gauge, in whi
h A

0

= 0. We 
an do a similar thing in general

relativity, by �xing our 
oordinate system. A popular 
hoi
e is harmoni
 gauge (also

known as Lorentz gauge and a host of other names), in whi
h

2x

�

= 0 : (4.84)

Here 2 = r

�

r

�

is the 
ovariant D'Alembertian, and it is 
ru
ial to realize when we take

the 
ovariant derivative that the four fun
tions x

�

are just fun
tions, not 
omponents of a

ve
tor. This 
ondition is therefore simply

0 = 2x

�

= g

��

�

�

�

�

x

�

� g

��

�

�

��

�

�

x

�

= �g

��

�

�

��

: (4.85)

In 
at spa
e, of 
ourse, Cartesian 
oordinates (in whi
h �

�

��

= 0) are harmoni
 
oordi-

nates. (As a general prin
iple, any fun
tion f whi
h satis�es 2f = 0 is 
alled an \harmoni


fun
tion.")

To see that this 
hoi
e of 
oordinates su

essfully �xes our gauge freedom, let's rewrite

the 
ondition (4.84) in a somewhat simpler form. We have

g

��

�

�

��

=

1

2

g

��

g

��

(�

�

g

��

+ �

�

g

��

� �

�

g

��

) ; (4.86)

from the de�nition of the Christo�el symbols. Meanwhile, from �

�

(g

��

g

��

) = �

�

Æ

�

�

= 0 we

have

g

��

�

�

g

��

= �g

��

�

�

g

��

: (4.87)

Also, from our previous exploration of the variation of the determinant of the metri
 (4.65),

we have

1

2

g

��

�

�

g

��

= �

1

p

�g

�

�

p

�g : (4.88)
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Putting it all together, we �nd that (in general),

g

��

�

�

��

=

1

p

�g

�

�

(

p

�gg

��

) : (4.89)

The harmoni
 gauge 
ondition (4.85) therefore is equivalent to

�

�

(

p

�gg

��

) = 0 : (4.90)

Taking the partial derivative of this with respe
t to t = x

0

yields

�

2

�t

2

(

p

�gg

0�

) = �

�

�x

i

"

�

�t

(

p

�gg

i�

)

#

: (4.91)

This 
ondition represents a se
ond-order di�erential equation for the previously un
on-

strained metri
 
omponents g

0�

, in terms of the given initial data. We have therefore

su

eeded in �xing our gauge freedom, in that we 
an now solve for the evolution of the

entire metri
 in harmoni
 
oordinates. (At least lo
ally; we have been glossing over the fa
t

our gauge 
hoi
e may not be well-de�ned globally, and we would have to resort to working

in pat
hes as usual. The same problem appears in gauge theories in parti
le physi
s.) Note

that we still have some freedom remaining; our gauge 
ondition (4.84) restri
ts how the


oordinates stret
h from our initial hypersurfa
e � throughout spa
etime, but we 
an still


hoose 
oordinates x

i

on � however we like. This 
orresponds to the fa
t that making a


oordinate transformation x

�

! x

�

+ Æ

�

, with 2Æ

�

= 0, does not violate the harmoni
 gauge


ondition.

We therefore have a well-de�ned initial value problem for general relativity; a state is

spe
i�ed by the spa
elike 
omponents of the metri
 and their time derivatives on a spa
elike

hypersurfa
e �; given these, the spa
elike 
omponents (4.83) of Einstein's equations allow

us to evolve the metri
 forward in time, up to an ambiguity in 
oordinate 
hoi
e whi
h

may be resolved by 
hoi
e of gauge. We must keep in mind that the initial data are not

arbitrary, but must obey the 
onstraints (4.82). (On
e we impose the 
onstraints on some

spa
elike hypersurfa
e, the equations of motion guarantee that they remain satis�ed, as you


an 
he
k.) The 
onstraints serve a useful purpose, of guaranteeing that the result remains

spa
etime 
ovariant after we have split our manifold into \spa
e" and \time." Spe
i�
ally,

the G

i0

= 8�GT

i0


onstraint implies that the evolution is independent of our 
hoi
e of


oordinates on �, while G

00

= 8�GT

00

enfor
es invarian
e under di�erent ways of sli
ing

spa
etime into spa
elike hypersurfa
es.

On
e we have seen how to 
ast Einstein's equations as an initial value problem, one issue

of 
ru
ial importan
e is the existen
e of solutions to the problem. That is, on
e we have

spe
i�ed a spa
elike hypersurfa
e with initial data, to what extent 
an we be guaranteed

that a unique spa
etime will be determined? Although one 
an do a great deal of hard work
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to answer this question with some pre
ision, it is fairly simple to get a handle on the ways

in whi
h a well-de�ned solution 
an fail to exist, whi
h we now 
onsider.

It is simplest to �rst 
onsider the problem of evolving matter �elds on a �xed ba
kground

spa
etime, rather than the evolution of the metri
 itself. We therefore 
onsider a spa
elike

hypersurfa
e � in some manifold M with �xed metri
 g

��

, and furthermore look at some


onne
ted subset S in �. Our guiding prin
iple will be that no signals 
an travel faster than

the speed of light; therefore \information" will only 
ow along timelike or null traje
tories

(not ne
essarily geodesi
s). We de�ne the future domain of dependen
e of S, denoted

D

+

(S), as the set of all points p su
h that every past-moving, timelike or null, inextendible


urve through p must interse
t S. (\Inextendible" just means that the 
urve goes on forever,

not ending at some �nite point.) We interpret this de�nition in su
h a way that S itself is a

subset ofD

+

(S). (Of 
ourse a rigorous formulation does not require additional interpretation

over and above the de�nitions, but we are not being as rigorous as we 
ould be right now.)

Similarly, we de�ne the past domain of dependen
e D

�

(S) in the same way, but with \past-

moving" repla
ed by \future-moving." Generally speaking, some points in M will be in one

of the domains of dependen
e, and some will be outside; we de�ne the boundary of D

+

(S)

to be the future Cau
hy horizon H

+

(S), and likewise the boundary of D

�

(S) to be the

past Cau
hy horizon H

�

(S). You 
an 
onvin
e yourself that they are both null surfa
es.

Σ S

D  (S)

H  (S) D  (S)

H  (S)
+

- -

+
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The usefulness of these de�nitions should be apparent; if nothing moves faster than light,

than signals 
annot propagate outside the light 
one of any point p. Therefore, if every


urve whi
h remains inside this light 
one must interse
t S, then information spe
i�ed on S

should be suÆ
ient to predi
t what the situation is at p. (That is, initial data for matter

�elds given on S 
an be used to solve for the value of the �elds at p.) The set of all points

for whi
h we 
an predi
t what happens by knowing what happens on S is simply the union

D

+

(S) [D

�

(S).

We 
an easily extend these ideas from the subset S to the entire hypersurfa
e �. The

important point is that D

+

(�) [D

�

(�) might fail to be all of M , even if � itself seems like

a perfe
tly respe
table hypersurfa
e that extends throughout spa
e. There are a number

of ways in whi
h this 
an happen. One possibility is that we have just 
hosen a \bad"

hypersurfa
e (although it is hard to give a general pres
ription for when a hypersurfa
e is

bad in this sense). Consider Minkowski spa
e, and a spa
elike hypersurfa
e � whi
h remains

to the past of the light 
one of some point.

Σ

D  (   )Σ
+

In this 
ase � is a ni
e spa
elike surfa
e, but it is 
lear that D

+

(�) ends at the light 
one,

and we 
annot use information on � to predi
t what happens throughout Minkowski spa
e.

Of 
ourse, there are other surfa
es we 
ould have pi
ked for whi
h the domain of dependen
e

would have been the entire manifold, so this doesn't worry us too mu
h.

A somewhat more nontrivial example is known as Misner spa
e. This is a two-

dimensional spa
etime with the topology of R

1

� S

1

, and a metri
 for whi
h the light 
ones

progressively tilt as you go forward in time. Past a 
ertain point, it is possible to travel on a

timelike traje
tory whi
h wraps around the S

1

and 
omes ba
k to itself; this is known as a


losed timelike 
urve. If we had spe
i�ed a surfa
e � to this past of this point, then none

of the points in the region 
ontaining 
losed timelike 
urves are in the domain of dependen
e

of �, sin
e the 
losed timelike 
urves themselves do not interse
t �. This is obviously a worse

problem than the previous one, sin
e a well-de�ned initial value problem does not seem to
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identify

closed
timelike
curve

Misner
space

exist in this spa
etime. (A
tually problems like this are the subje
t of some 
urrent resear
h

interest, so I won't 
laim that the issue is settled.)

A �nal example is provided by the existen
e of singularities, points whi
h are not in the

manifold even though they 
an be rea
hed by travelling along a geodesi
 for a �nite distan
e.

Typi
ally these o

ur when the 
urvature be
omes in�nite at some point; if this happens,

the point 
an no longer be said to be part of the spa
etime. Su
h an o

urren
e 
an lead to

the emergen
e of a Cau
hy horizon | a point p whi
h is in the future of a singularity 
annot

be in the domain of dependen
e of a hypersurfa
e to the past of the singularity, be
ause

there will be 
urves from p whi
h simply end at the singularity.

Σ

Σ

D  (   )

H  (   )

Σ
+

+

All of these obsta
les 
an also arise in the initial value problem for GR, when we try to

evolve the metri
 itself from initial data. However, they are of di�erent degrees of trouble-
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someness. The possibility of pi
king a \bad" initial hypersurfa
e does not arise very often,

espe
ially sin
e most solutions are found globally (by solving Einstein's equations throughout

spa
etime). The one situation in whi
h you have to be 
areful is in numeri
al solution of Ein-

stein's equations, where a bad 
hoi
e of hypersurfa
e 
an lead to numeri
al diÆ
ulties even

if in prin
iple a 
omplete solution exists. Closed timelike 
urves seem to be something that

GR works hard to avoid | there are 
ertainly solutions whi
h 
ontain them, but evolution

from generi
 initial data does not usually produ
e them. Singularities, on the other hand,

are pra
ti
ally unavoidable. The simple fa
t that the gravitational for
e is always attra
tive

tends to pull matter together, in
reasing the 
urvature, and generally leading to some sort of

singularity. This is something whi
h we apparently must learn to live with, although there

is some hope that a well-de�ned theory of quantum gravity will eliminate the singularities

of 
lassi
al GR.
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5 More Geometry

With an understanding of how the laws of physi
s adapt to 
urved spa
etime, it is undeniably

tempting to start in on appli
ations. However, a few extra mathemati
al te
hniques will

simplify our task a great deal, so we will pause brie
y to explore the geometry of manifolds

some more.

When we dis
ussed manifolds in se
tion 2, we introdu
ed maps between two di�erent

manifolds and how maps 
ould be 
omposed. We now turn to the use of su
h maps in 
arrying

along tensor �elds from one manifold to another. We therefore 
onsider two manifolds M

and N , possibly of di�erent dimension, with 
oordinate systems x

�

and y

�

, respe
tively. We

imagine that we have a map � :M ! N and a fun
tion f : N ! R.

M

x

f = f

f

φ

R

R

R
m n

µ yα

N

*
φ φ

It is obvious that we 
an 
ompose � with f to 
onstru
t a map (f Æ �) : M ! R, whi
h is

simply a fun
tion on M . Su
h a 
onstru
tion is suÆ
iently useful that it gets its own name;

we de�ne the pullba
k of f by �, denoted �

�

f , by

�

�

f = (f Æ �) : (5.1)

The name makes sense, sin
e we think of �

�

as \pulling ba
k" the fun
tion f from N to M .

We 
an pull fun
tions ba
k, but we 
annot push them forward. If we have a fun
tion

g :M ! R, there is no way we 
an 
ompose g with � to 
reate a fun
tion on N ; the arrows

don't �t together 
orre
tly. But re
all that a ve
tor 
an be thought of as a derivative operator

that maps smooth fun
tions to real numbers. This allows us to de�ne the pushforward of

129
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a ve
tor; if V (p) is a ve
tor at a point p on M , we de�ne the pushforward ve
tor �

�

V at the

point �(p) on N by giving its a
tion on fun
tions on N :

(�

�

V )(f) = V (�

�

f) : (5.2)

So to push forward a ve
tor �eld we say \the a
tion of �

�

V on any fun
tion is simply the

a
tion of V on the pullba
k of that fun
tion."

This is a little abstra
t, and it would be ni
e to have a more 
on
rete des
ription. We

know that a basis for ve
tors on M is given by the set of partial derivatives �

�

=

�

�x

�

, and

a basis on N is given by the set of partial derivatives �

�

=

�

�y

�

. Therefore we would like

to relate the 
omponents of V = V

�

�

�

to those of (�

�

V ) = (�

�

V )

�

�

�

. We 
an �nd the

sought-after relation by applying the pushed-forward ve
tor to a test fun
tion and using the


hain rule (2.3):

(�

�

V )

�

�

�

f = V

�

�

�

(�

�

f)

= V

�

�

�

(f Æ �)

= V

�

�y

�

�x

�

�

�

f : (5.3)

This simple formula makes it irresistible to think of the pushforward operation �

�

as a matrix

operator, (�

�

V )

�

= (�

�

)

�

�

V

�

, with the matrix being given by

(�

�

)

�

�

=

�y

�

�x

�

: (5.4)

The behavior of a ve
tor under a pushforward thus bears an unmistakable resemblan
e to the

ve
tor transformation law under 
hange of 
oordinates. In fa
t it is a generalization, sin
e

when M and N are the same manifold the 
onstru
tions are (as we shall dis
uss) identi
al;

but don't be fooled, sin
e in general � and � have di�erent allowed values, and there is no

reason for the matrix �y

�

=�x

�

to be invertible.

It is a rewarding exer
ise to 
onvin
e yourself that, although you 
an push ve
tors forward

fromM to N (given a map � :M ! N), you 
annot in general pull them ba
k | just keep

trying to invent an appropriate 
onstru
tion until the futility of the attempt be
omes 
lear.

Sin
e one-forms are dual to ve
tors, you should not be surprised to hear that one-forms 
an

be pulled ba
k (but not in general pushed forward). To do this, remember that one-forms

are linear maps from ve
tors to the real numbers. The pullba
k �

�

! of a one-form ! on N


an therefore be de�ned by its a
tion on a ve
tor V on M , by equating it with the a
tion of

! itself on the pushforward of V :

(�

�

!)(V ) = !(�

�

V ) : (5.5)

On
e again, there is a simple matrix des
ription of the pullba
k operator on forms, (�

�

!)

�

=

(�

�

)

�

�

!

�

, whi
h we 
an derive using the 
hain rule. It is given by

(�

�

)

�

�

=

�y

�

�x

�

: (5.6)
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That is, it is the same matrix as the pushforward (5.4), but of 
ourse a di�erent index is


ontra
ted when the matrix a
ts to pull ba
k one-forms.

There is a way of thinking about why pullba
ks and pushforwards work on some obje
ts

but not others, whi
h may or may not be helpful. If we denote the set of smooth fun
tions

on M by F(M), then a ve
tor V (p) at a point p on M (i.e., an element of the tangent spa
e

T

p

M) 
an be thought of as an operator from F(M) to R. But we already know that the

pullba
k operator on fun
tions maps F(N) to F(M) (just as � itself maps M to N , but

in the opposite dire
tion). Therefore we 
an de�ne the pushforward �

�

a
ting on ve
tors

simply by 
omposing maps, as we �rst de�ned the pullba
k of fun
tions:

F F(M) (N)

φ*(V(p)) = V(p) φ

R

φ

V(p)
*

*

Similarly, if T

q

N is the tangent spa
e at a point q on N , then a one-form ! at q (i.e., an

element of the 
otangent spa
e T

�

q

N) 
an be thought of as an operator from T

q

N to R. Sin
e

the pushforward �

�

maps T

p

M to T

�(p)

N , the pullba
k �

�

of a one-form 
an also be thought

of as mere 
omposition of maps:

T  Mp φ(p)T     N

φ*= ω(ω)
*

φ

φ*

ω

R

If this is not helpful, don't worry about it. But do keep straight what exists and what

doesn't; the a
tual 
on
epts are simple, it's just remembering whi
h map goes what way

that leads to 
onfusion.

You will re
all further that a (0; l) tensor | one with l lower indi
es and no upper ones

| is a linear map from the dire
t produ
t of l ve
tors to R. We 
an therefore pull ba
k

not only one-forms, but tensors with an arbitrary number of lower indi
es. The de�nition is

simply the a
tion of the original tensor on the pushed-forward ve
tors:

(�

�

T )(V

(1)

; V

(2)

; : : : ; V

(l)

) = T (�

�

V

(1)

; �

�

V

(2)

; : : : ; �

�

V

(l)

) ; (5.7)
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where T

�

1

����

l

is a (0; l) tensor on N . We 
an similarly push forward any (k; 0) tensor S

�

1

����

k

by a
ting it on pulled-ba
k one-forms:

(�

�

S)(!

(1)

; !

(2)

; : : : ; !

(k)

) = S(�

�

!

(1)

; �

�

!

(2)

; : : : ; �

�

!

(k)

) : (5.8)

Fortunately, the matrix representations of the pushforward (5.4) and pullba
k (5.6) extend to

the higher-rank tensors simply by assigning one matrix to ea
h index; thus, for the pullba
k

of a (0; l) tensor, we have

(�

�

T )

�

1

����

l

=

�y

�

1

�x

�

1

� � �

�y

�

l

�x

�

l

T

�

1

����

l

; (5.9)

while for the pushforward of a (k; 0) tensor we have

(�

�

S)

�

1

����

k

=

�y

�

1

�x

�

1

� � �

�y

�

k

�x

�

k

S

�

1

����

k

: (5.10)

Our 
omplete pi
ture is therefore:

φ*

φ
*(  )

(  )k

0 (  )k

0

l l

0 (  )0

φ

NM

Note that tensors with both upper and lower indi
es 
an generally be neither pushed forward

nor pulled ba
k.

This ma
hinery be
omes somewhat less imposing on
e we see it at work in a simple

example. One 
ommon o

urren
e of a map between two manifolds is when M is a
tually a

submanifold of N ; then there is an obvious map from M to N whi
h just takes an element

of M to the \same" element of N . Consider our usual example, the two-sphere embedded in

R

3

, as the lo
us of points a unit distan
e from the origin. If we put 
oordinates x

�

= (�; �)

on M = S

2

and y

�

= (x; y; z) on N = R

3

, the map � :M ! N is given by

�(�; �) = (sin � 
os �; sin � sin�; 
os �) : (5.11)

In the past we have 
onsidered the metri
 ds

2

= dx

2

+ dy

2

+ dz

2

on R

3

, and said that it

indu
es a metri
 d�

2

+ sin

2

� d�

2

on S

2

, just by substituting (5.11) into this 
at metri
 on
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R

3

. We didn't really justify su
h a statement at the time, but now we 
an do so. (Of 
ourse

it would be easier if we worked in spheri
al 
oordinates on R

3

, but doing it the hard way is

more illustrative.) The matrix of partial derivatives is given by

�y

�

�x

�

=

�


os � 
os � 
os � sin� � sin �

� sin � sin� sin � 
os � 0

�

: (5.12)

The metri
 on S

2

is obtained by simply pulling ba
k the metri
 from R

3

,

(�

�

g)

��

=

�y

�

�x

�

�y

�

�x

�

g

��

=

�

1 0

0 sin

2

�

�

; (5.13)

as you 
an easily 
he
k. On
e again, the answer is the same as you would get by naive

substitution, but now we know why.

We have been 
areful to emphasize that a map � :M ! N 
an be used to push 
ertain

things forward and pull other things ba
k. The reason why it generally doesn't work both

ways 
an be tra
ed to the fa
t that � might not be invertible. If � is invertible (and both �

and �

�1

are smooth, whi
h we always impli
itly assume), then it de�nes a di�eomorphism

between M and N . In this 
ase M and N are the same abstra
t manifold. The beauty of

di�eomorphisms is that we 
an use both � and �

�1

to move tensors from M to N ; this will

allow us to de�ne the pushforward and pullba
k of arbitrary tensors. Spe
i�
ally, for a (k; l)

tensor �eld T

�

1

����

k

�

1

����

l

on M , we de�ne the pushforward by

(�

�

T )(!

(1)

; : : : ; !

(k)

; V

(1)

; : : : ; V

(l)

) = T (�

�

!

(1)

; : : : ; �

�

!

(k)

; [�

�1

℄

�

V

(1)

; : : : ; [�

�1

℄

�

V

(l)

) ;

(5.14)

where the !

(i)

's are one-forms on N and the V

(i)

's are ve
tors on N . In 
omponents this

be
omes

(�

�

T )

�

1

����

k

�

1

����

l

=

�y

�

1

�x

�

1

� � �

�y

�

k

�x

�

k

�x

�

1

�y

�

1

� � �

�x

�

l

�y

�

l

T

�

1

����

k

�

1

����

l

: (5.15)

The appearan
e of the inverse matrix �x

�

=�y

�

is legitimate be
ause � is invertible. Note

that we 
ould also de�ne the pullba
k in the obvious way, but there is no need to write

separate equations be
ause the pullba
k �

�

is the same as the pushforward via the inverse

map, [�

�1

℄

�

.

We are now in a position to explain the relationship between di�eomorphisms and 
oordi-

nate transformations. The relationship is that they are two di�erent ways of doing pre
isely

the same thing. If you like, di�eomorphisms are \a
tive 
oordinate transformations", while

traditional 
oordinate transformations are \passive." Consider an n-dimensional manifold

M with 
oordinate fun
tions x

�

: M ! R

n

. To 
hange 
oordinates we 
an either simply

introdu
e new fun
tions y

�

: M ! R

n

(\keep the manifold �xed, 
hange the 
oordinate
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maps"), or we 
ould just as well introdu
e a di�eomorphism � : M ! M , after whi
h the


oordinates would just be the pullba
ks (�

�

x)

�

: M ! R

n

(\move the points on the man-

ifold, and then evaluate the 
oordinates of the new points"). In this sense, (5.15) really is

the tensor transformation law, just thought of from a di�erent point of view.

φ
*

φ

n

(    x)

x

y

µ

µ

µ

R

M

Sin
e a di�eomorphism allows us to pull ba
k and push forward arbitrary tensors, it

provides another way of 
omparing tensors at di�erent points on a manifold. Given a di�eo-

morphism � :M !M and a tensor �eld T

�

1

����

k

�

1

����

l

(x), we 
an form the di�eren
e between

the value of the tensor at some point p and �

�

[T

�

1

����

k

�

1

����

l

(�(p))℄, its value at �(p) pulled

ba
k to p. This suggests that we 
ould de�ne another kind of derivative operator on tensor

�elds, one whi
h 
ategorizes the rate of 
hange of the tensor as it 
hanges under the di�eo-

morphism. For that, however, a single dis
rete di�eomorphism is insuÆ
ient; we require a

one-parameter family of di�eomorphisms, �

t

. This family 
an be thought of as a smooth

map R�M !M , su
h that for ea
h t 2 R �

t

is a di�eomorphism and �

s

Æ �

t

= �

s+t

. Note

that this last 
ondition implies that �

0

is the identity map.

One-parameter families of di�eomorphisms 
an be thought of as arising from ve
tor �elds

(and vi
e-versa). If we 
onsider what happens to the point p under the entire family �

t

, it is


lear that it des
ribes a 
urve in M ; sin
e the same thing will be true of every point on M ,

these 
urves �ll the manifold (although there 
an be degenera
ies where the di�eomorphisms

have �xed points). We 
an de�ne a ve
tor �eld V

�

(x) to be the set of tangent ve
tors to

ea
h of these 
urves at every point, evaluated at t = 0. An example on S

2

is provided by

the di�eomorphism �

t

(�; �) = (�; �+ t).

We 
an reverse the 
onstru
tion to de�ne a one-parameter family of di�eomorphisms

from any ve
tor �eld. Given a ve
tor �eld V

�

(x), we de�ne the integral 
urves of the

ve
tor �eld to be those 
urves x

�

(t) whi
h solve

dx

�

dt

= V

�

: (5.16)

Note that this familiar-looking equation is now to be interpreted in the opposite sense from

our usual way | we are given the ve
tors, from whi
h we de�ne the 
urves. Solutions to
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φ

(5.16) are guaranteed to exist as long as we don't do anything silly like run into the edge of

our manifold; any standard di�erential geometry text will have the proof, whi
h amounts to

�nding a 
lever 
oordinate system in whi
h the problem redu
es to the fundamental theorem

of ordinary di�erential equations. Our di�eomorphisms �

t

represent \
ow down the integral


urves," and the asso
iated ve
tor �eld is referred to as the generator of the di�eomorphism.

(Integral 
urves are used all the time in elementary physi
s, just not given the name. The

\lines of magneti
 
ux" tra
ed out by iron �lings in the presen
e of a magnet are simply the

integral 
urves of the magneti
 �eld ve
tor B.)

Given a ve
tor �eld V

�

(x), then, we have a family of di�eomorphisms parameterized by

t, and we 
an ask how fast a tensor 
hanges as we travel down the integral 
urves. For ea
h

t we 
an de�ne this 
hange as

�

t

T

�

1

����

k

�

1

����

l

(p) = �

t�

[T

�

1

����

k

�

1

����

l

(�

t

(p))℄� T

�

1

����

k

�

1

����

l

(p) : (5.17)

Note that both terms on the right hand side are tensors at p.

T[   (p)]φt

(p)

p

[T(    (p))]φ
t tφ
*

T(p)

x  (t)µ

φ
t

M

We then de�ne the Lie derivative of the tensor along the ve
tor �eld as

$

V

T

�

1

����

k

�

1

����

l

= lim

t!0

�

�

t

T

�

1

����

k

�

1

����

l

t

�

: (5.18)
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The Lie derivative is a map from (k; l) tensor �elds to (k; l) tensor �elds, whi
h is manifestly

independent of 
oordinates. Sin
e the de�nition essentially amounts to the 
onventional

de�nition of an ordinary derivative applied to the 
omponent fun
tions of the tensor, it

should be 
lear that it is linear,

$

V

(aT + bS ) = a$

V

T + b$

V

S ; (5.19)

and obeys the Leibniz rule,

$

V

(T 
 S ) = ($

V

T )
 S + T 
 ($

V

S ) ; (5.20)

where S and T are tensors and a and b are 
onstants. The Lie derivative is in fa
t a more

primitive notion than the 
ovariant derivative, sin
e it does not require spe
i�
ation of a


onne
tion (although it does require a ve
tor �eld, of 
ourse). A moment's re
e
tion shows

that it redu
es to the ordinary derivative on fun
tions,

$

V

f = V (f ) = V

�

�

�

f : (5.21)

To dis
uss the a
tion of the Lie derivative on tensors in terms of other operations we

know, it is 
onvenient to 
hoose a 
oordinate system adapted to our problem. Spe
i�
ally,

we will work in 
oordinates x

�

for whi
h x

1

is the parameter along the integral 
urves (and

the other 
oordinates are 
hosen any way we like). Then the ve
tor �eld takes the form

V = �=�x

1

; that is, it has 
omponents V

�

= (1; 0; 0; : : : ; 0). The magi
 of this 
oordinate

system is that a di�eomorphism by t amounts to a 
oordinate transformation from x

�

to

y

�

= (x

1

+ t; x

2

; : : : ; x

n

). Thus, from (5.6) the pullba
k matrix is simply

(�

t�

)

�

�

= Æ

�

�

; (5.22)

and the 
omponents of the tensor pulled ba
k from �

t

(p) to p are simply

�

t�

[T

�

1

����

k

�

1

����

l

(�

t

(p))℄ = T

�

1

����

k

�

1

����

l

(x

1

+ t; x

2

; : : : ; x

n

) : (5.23)

In this 
oordinate system, then, the Lie derivative be
omes

$

V

T

�

1

����

k

�

1

����

l

=

�

�x

1

T

�

1

����

k

�

1

����

l

; (5.24)

and spe
i�
ally the derivative of a ve
tor �eld U

�

(x) is

$

V

U

�

=

�U

�

�x

1

: (5.25)

Although this expression is 
learly not 
ovariant, we know that the 
ommutator [V;U ℄ is a

well-de�ned tensor, and in this 
oordinate system

[V;U ℄

�

= V

�

�

�

U

�

� U

�

�

�

V

�
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=

�U

�

�x

1

: (5.26)

Therefore the Lie derivative of U with respe
t to V has the same 
omponents in this 
oordi-

nate system as the 
ommutator of V and U ; but sin
e both are ve
tors, they must be equal

in any 
oordinate system:

$

V

U

�

= [V ;U ℄

�

: (5.27)

As an immediate 
onsequen
e, we have $

V

S = �$

W

V . It is be
ause of (5.27) that the


ommutator is sometimes 
alled the \Lie bra
ket."

To derive the a
tion of $

V

on a one-form !

�

, begin by 
onsidering the a
tion on the

s
alar !

�

U

�

for an arbitrary ve
tor �eld U

�

. First use the fa
t that the Lie derivative with

respe
t to a ve
tor �eld redu
es to the a
tion of the ve
tor itself when applied to a s
alar:

$

V

(!

�

U

�

) = V (!

�

U

�

)

= V

�

�

�

(!

�

U

�

)

= V

�

(�

�

!

�

)U

�

+ V

�

!

�

(�

�

U

�

) : (5.28)

Then use the Leibniz rule on the original s
alar:

$

V

(!

�

U

�

) = ($

V

!)

�

U

�

+ !

�

($

V

U )

�

= ($

V

!)

�

U

�

+ !

�

V

�

�

�

U

�

� !

�

U

�

�

�

V

�

: (5.29)

Setting these expressions equal to ea
h other and requiring that equality hold for arbitrary

U

�

, we see that

$

V

!

�

= V

�

�

�

!

�

+ (�

�

V

�

)!

�

; (5.30)

whi
h (like the de�nition of the 
ommutator) is 
ompletely 
ovariant, although not manifestly

so.

By a similar pro
edure we 
an de�ne the Lie derivative of an arbitrary tensor �eld. The

answer 
an be written

$

V

T

�

1

�

2

����

k

�

1

�

2

����

l

= V

�

�

�

T

�

1

�

2

����

k

�

1

�

2

����

l

�(�

�

V

�

1

)T

��

2

����

k

�

1

�

2

����

l

� (�

�

V

�

2

)T

�

1

�����

k

�

1

�

2

����

l

� � � �

+(�

�

1

V

�

)T

�

1

�

2

����

k

��

2

����

l

+ (�

�

2

V

�

)T

�

1

�

2

����

k

�

1

�����

l

+ � � � :(5.31)

On
e again, this expression is 
ovariant, despite appearan
es. It would undoubtedly be


omforting, however, to have an equivalent expression that looked manifestly tensorial. In

fa
t it turns out that we 
an write

$

V

T

�

1

�

2

����

k

�

1

�

2

����

l

= V

�

r

�

T

�

1

�

2

����

k

�

1

�

2

����

l

�(r

�

V

�

1

)T

��

2

����

k

�

1

�

2

����

l

� (r

�

V

�

2

)T

�

1

�����

k

�

1

�

2

����

l

� � � �

+(r

�

1

V

�

)T

�

1

�

2

����

k

��

2

����

l

+ (r

�

2

V

�

)T

�

1

�

2

����

k

�

1

�����

l

+ � � � ;(5.32)
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where r

�

represents any symmetri
 (torsion-free) 
ovariant derivative (in
luding, of 
ourse,

one derived from a metri
). You 
an 
he
k that all of the terms whi
h would involve 
onne
-

tion 
oeÆ
ients if we were to expand (5.32) would 
an
el, leaving only (5.31). Both versions

of the formula for a Lie derivative are useful at di�erent times. A parti
ularly useful formula

is for the Lie derivative of the metri
:

$

V

g

��

= V

�

r

�

g

��

+ (r

�

V

�

)g

��

+ (r

�

V

�

)g

��

= r

�

V

�

+r

�

V

�

= 2r

(�

V

�)

; (5.33)

where r

�

is the 
ovariant derivative derived from g

��

.

Let's put some of these ideas into the 
ontext of general relativity. You will often hear it

pro
laimed that GR is a \di�eomorphism invariant" theory. What this means is that, if the

universe is represented by a manifold M with metri
 g

��

and matter �elds  , and � :M !

M is a di�eomorphism, then the sets (M;g

��

;  ) and (M;�

�

g

��

; �

�

 ) represent the same

physi
al situation. Sin
e di�eomorphisms are just a
tive 
oordinate transformations, this is

a highbrow way of saying that the theory is 
oordinate invariant. Although su
h a statement

is true, it is a sour
e of great misunderstanding, for the simple fa
t that it 
onveys very little

information. Any semi-respe
table theory of physi
s is 
oordinate invariant, in
luding those

based on spe
ial relativity or Newtonian me
hani
s; GR is not unique in this regard. When

people say that GR is di�eomorphism invariant, more likely than not they have one of two

(
losely related) 
on
epts in mind: the theory is free of \prior geometry", and there is no

preferred 
oordinate system for spa
etime. The �rst of these stems from the fa
t that the

metri
 is a dynami
al variable, and along with it the 
onne
tion and volume element and

so forth. Nothing is given to us ahead of time, unlike in 
lassi
al me
hani
s or SR. As

a 
onsequen
e, there is no way to simplify life by sti
king to a spe
i�
 
oordinate system

adapted to some absolute elements of the geometry. This state of a�airs for
es us to be very


areful; it is possible that two purportedly distin
t 
on�gurations (of matter and metri
)

in GR are a
tually \the same", related by a di�eomorphism. In a path integral approa
h

to quantum gravity, where we would like to sum over all possible 
on�gurations, spe
ial


are must be taken not to over
ount by allowing physi
ally indistinguishable 
on�gurations

to 
ontribute more than on
e. In SR or Newtonian me
hani
s, meanwhile, the existen
e

of a preferred set of 
oordinates saves us from su
h ambiguities. The fa
t that GR has no

preferred 
oordinate system is often garbled into the statement that it is 
oordinate invariant

(or \generally 
ovariant"); both things are true, but one has more 
ontent than the other.

On the other hand, the fa
t of di�eomorphism invarian
e 
an be put to good use. Re
all

that the 
omplete a
tion for gravity 
oupled to a set of matter �elds  

i

is given by a sum of

the Hilbert a
tion for GR plus the matter a
tion,

S =

1

8�G

S

H

[g

��

℄ + S

M

[g

��

;  

i

℄ : (5.34)
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The Hilbert a
tion S

H

is di�eomorphism invariant when 
onsidered in isolation, so the matter

a
tion S

M

must also be if the a
tion as a whole is to be invariant. We 
an write the variation

in S

M

under a di�eomorphism as

ÆS

M

=

Z

d

n

x

ÆS

M

Æg

��

Æg

��

+

Z

d

n

x

ÆS

M

Æ 

i

Æ 

i

: (5.35)

We are not 
onsidering arbitrary variations of the �elds, only those whi
h result from a

di�eomorphism. Nevertheless, the matter equations of motion tell us that the variation of

S

M

with respe
t to  

i

will vanish for any variation (sin
e the gravitational part of the a
tion

doesn't involve the matter �elds). Hen
e, for a di�eomorphism invariant theory the �rst

term on the right hand side of (5.35) must vanish. If the di�eomorphism in generated by a

ve
tor �eld V

�

(x), the in�nitesimal 
hange in the metri
 is simply given by its Lie derivative

along V

�

; by (5.33) we have

Æg

��

= $

V

g

��

= 2r

(�

V

�)

: (5.36)

Setting ÆS

M

= 0 then implies

0 =

Z

d

n

x

ÆS

M

Æg

��

r

�

V

�

= �

Z

d

n

x

p

�gV

�

r

�

 

1

p

�g

ÆS

M

Æg

��

!

; (5.37)

where we are able to drop the symmetrization ofr

(�

V

�)

sin
e ÆS

M

=Æg

��

is already symmetri
.

Demanding that (5.37) hold for di�eomorphisms generated by arbitrary ve
tor �elds V

�

, and

using the de�nition (4.70) of the energy-momentum tensor, we obtain pre
isely the law of

energy-momentum 
onservation,

r

�

T

��

= 0 : (5.38)

This is why we 
laimed earlier that the 
onservation of T

��

was more than simply a 
onse-

quen
e of the Prin
iple of Equivalen
e; it is mu
h more se
ure than that, resting only on the

di�eomorphism invarian
e of the theory.

There is one more use to whi
h we will put the ma
hinery we have set up in this se
tion:

symmetries of tensors. We say that a di�eomorphism � is a symmetry of some tensor T if

the tensor is invariant after being pulled ba
k under �:

�

�

T = T : (5.39)

Although symmetries may be dis
rete, it is more 
ommon to have a one-parameter family

of symmetries �

t

. If the family is generated by a ve
tor �eld V

�

(x), then (5.39) amounts to

$

V

T = 0 : (5.40)
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By (5.25), one impli
ation of a symmetry is that, if T is symmetri
 under some one-parameter

family of di�eomorphisms, we 
an always �nd a 
oordinate system in whi
h the 
omponents

of T are all independent of one of the 
oordinates (the integral 
urve 
oordinate of the

ve
tor �eld). The 
onverse is also true; if all of the 
omponents are independent of one

of the 
oordinates, then the partial derivative ve
tor �eld asso
iated with that 
oordinate

generates a symmetry of the tensor.

The most important symmetries are those of the metri
, for whi
h �

�

g

��

= g

��

. A

di�eomorphism of this type is 
alled an isometry. If a one-parameter family of isometries

is generated by a ve
tor �eld V

�

(x), then V

�

is known as a Killing ve
tor �eld. The


ondition that V

�

be a Killing ve
tor is thus

$

V

g

��

= 0 ; (5.41)

or from (5.33),

r

(�

V

�)

= 0 : (5.42)

This last version is Killing's equation. If a spa
etime has a Killing ve
tor, then we know

we 
an �nd a 
oordinate system in whi
h the metri
 is independent of one of the 
oordinates.

By far the most useful fa
t about Killing ve
tors is that Killing ve
tors imply 
onserved

quantities asso
iated with the motion of free parti
les. If x

�

(�) is a geodesi
 with tangent

ve
tor U

�

= dx

�

=d�, and V

�

is a Killing ve
tor, then

U

�

r

�

(V

�

U

�

) = U

�

U

�

r

�

V

�

+ V

�

U

�

r

�

U

�

= 0 ; (5.43)

where the �rst term vanishes from Killing's equation and the se
ond from the fa
t that x

�

(�)

is a geodesi
. Thus, the quantity V

�

U

�

is 
onserved along the parti
le's worldline. This 
an

be understood physi
ally: by de�nition the metri
 is un
hanging along the dire
tion of

the Killing ve
tor. Loosely speaking, therefore, a free parti
le will not feel any \for
es" in

this dire
tion, and the 
omponent of its momentum in that dire
tion will 
onsequently be


onserved.

Long ago we referred to the 
on
ept of a spa
e with maximal symmetry, without o�ering

a rigorous de�nition. The rigorous de�nition is that a maximally symmetri
 spa
e is one

whi
h possesses the largest possible number of Killing ve
tors, whi
h on an n-dimensional

manifold is n(n+1)=2. We will not prove this statement, but it is easy to understand at an

informal level. Consider the Eu
lidean spa
e R

n

, where the isometries are well known to us:

translations and rotations. In general there will be n translations, one for ea
h dire
tion we


an move. There will also be n(n� 1)=2 rotations; for ea
h of n dimensions there are n� 1

dire
tions in whi
h we 
an rotate it, but we must divide by two to prevent over
ounting

(rotating x into y and rotating y into x are two versions of the same thing). We therefore
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have

n+

n(n� 1)

2

=

n(n+ 1)

2

(5.44)

independent Killing ve
tors. The same kind of 
ounting argument applies to maximally

symmetri
 spa
es with 
urvature (su
h as spheres) or a non-Eu
lidean signature (su
h as

Minkowski spa
e), although the details are marginally di�erent.

Although it may or may not be simple to a
tually solve Killing's equation in any given

spa
etime, it is frequently possible to write down some Killing ve
tors by inspe
tion. (Of


ourse a \generi
" metri
 has no Killing ve
tors at all, but to keep things simple we often deal

with metri
s with high degrees of symmetry.) For example inR

2

with metri
 ds

2

= dx

2

+dy

2

,

independen
e of the metri
 
omponents with respe
t to x and y immediately yields two

Killing ve
tors:

X

�

= (1; 0) ;

Y

�

= (0; 1) : (5.45)

These 
learly represent the two translations. The one rotation would 
orrespond to the

ve
tor R = �=�� if we were in polar 
oordinates; in Cartesian 
oordinates this be
omes

R

�

= (�y; x) : (5.46)

You 
an 
he
k for yourself that this a
tually does solve Killing's equation.

Note that in n � 2 dimensions, there 
an be more Killing ve
tors than dimensions. This

is be
ause a set of Killing ve
tor �elds 
an be linearly independent, even though at any one

point on the manifold the ve
tors at that point are linearly dependent. It is trivial to show

(so you should do it yourself) that a linear 
ombination of Killing ve
tors with 
onstant


oeÆ
ients is still a Killing ve
tor (in whi
h 
ase the linear 
ombination does not 
ount as

an independent Killing ve
tor), but this is not ne
essarily true with 
oeÆ
ients whi
h vary

over the manifold. You will also show that the 
ommutator of two Killing ve
tor �elds is a

Killing ve
tor �eld; this is very useful to know, but it may be the 
ase that the 
ommutator

gives you a ve
tor �eld whi
h is not linearly independent (or it may simply vanish). The

problem of �nding all of the Killing ve
tors of a metri
 is therefore somewhat tri
ky, as it is

sometimes not 
lear when to stop looking.
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6 Weak Fields and Gravitational Radiation

When we �rst derived Einstein's equations, we 
he
ked that we were on the right tra
k by


onsidering the Newtonian limit. This amounted to the requirements that the gravitational

�eld be weak, that it be stati
 (no time derivatives), and that test parti
les be moving slowly.

In this se
tion we will 
onsider a less restri
tive situation, in whi
h the �eld is still weak but

it 
an vary with time, and there are no restri
tions on the motion of test parti
les. This

will allow us to dis
uss phenomena whi
h are absent or ambiguous in the Newtonian theory,

su
h as gravitational radiation (where the �eld varies with time) and the de
e
tion of light

(whi
h involves fast-moving parti
les).

The weakness of the gravitational �eld is on
e again expressed as our ability to de
ompose

the metri
 into the 
at Minkowski metri
 plus a small perturbation,

g

��

= �

��

+ h

��

; jh

��

j << 1 : (6.1)

We will restri
t ourselves to 
oordinates in whi
h �

��

takes its 
anoni
al form, �

��

=

diag(�1;+1;+1;+1). The assumption that h

��

is small allows us to ignore anything that is

higher than �rst order in this quantity, from whi
h we immediately obtain

g

��

= �

��

� h

��

; (6.2)

where h

��

= �

��

�

��

h

��

. As before, we 
an raise and lower indi
es using �

��

and �

��

, sin
e

the 
orre
tions would be of higher order in the perturbation. In fa
t, we 
an think of

the linearized version of general relativity (where e�e
ts of higher than �rst order in h

��

are negle
ted) as des
ribing a theory of a symmetri
 tensor �eld h

��

propagating on a 
at

ba
kground spa
etime. This theory is Lorentz invariant in the sense of spe
ial relativity;

under a Lorentz transformation x

�

0

= �

�

0

�

x

�

, the 
at metri
 �

��

is invariant, while the

perturbation transforms as

h

�

0

�

0
= �

�

0

�

�

�

0

�

h

��

: (6.3)

(Note that we 
ould have 
onsidered small perturbations about some other ba
kground

spa
etime besides Minkowski spa
e. In that 
ase the metri
 would have been written g

��

=

g

(0)

��

+ h

��

, and we would have derived a theory of a symmetri
 tensor propagating on the


urved spa
e with metri
 g

(0)

��

. Su
h an approa
h is ne
essary, for example, in 
osmology.)

We want to �nd the equation of motion obeyed by the perturbations h

��

, whi
h 
ome by

examining Einstein's equations to �rst order. We begin with the Christo�el symbols, whi
h

are given by

�

�

��

=

1

2

g

��

(�

�

g

��

+ �

�

g

��

� �

�

g

��

)
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=

1

2

�

��

(�

�

h

��

+ �

�

h

��

� �

�

h

��

) : (6.4)

Sin
e the 
onne
tion 
oeÆ
ients are �rst order quantities, the only 
ontribution to the Rie-

mann tensor will 
ome from the derivatives of the �'s, not the �

2

terms. Lowering an index

for 
onvenien
e, we obtain

R

����

= �

��

�

�

�

�

��

� �

��

�

�

�

�

��

=

1

2

(�

�

�

�

h

��

+ �

�

�

�

h

��

� �

�

�

�

h

��

� �

�

�

�

h

��

) : (6.5)

The Ri

i tensor 
omes from 
ontra
ting over � and �, giving

R

��

=

1

2

(�

�

�

�

h

�

�

+ �

�

�

�

h

�

�

� �

�

�

�

h �2h

��

) ; (6.6)

whi
h is manifestly symmetri
 in � and �. In this expression we have de�ned the tra
e of

the perturbation as h = �

��

h

��

= h

�

�

, and the D'Alembertian is simply the one from 
at

spa
e, 2 = ��

2

t

+ �

2

x

+ �

2

y

+ �

2

z

. Contra
ting again to obtain the Ri

i s
alar yields

R = �

�

�

�

h

��

�2h : (6.7)

Putting it all together we obtain the Einstein tensor:

G

��

= R

��

�

1

2

�

��

R

=

1

2

(�

�

�

�

h

�

�

+ �

�

�

�

h

�

�

� �

�

�

�

h�2h

��

� �

��

�

�

�

�

h

��

+ �

��

2h) : (6.8)

Consistent with our interpretation of the linearized theory as one des
ribing a symmetri


tensor on a 
at ba
kground, the linearized Einstein tensor (6.8) 
an be derived by varying

the following Lagrangian with respe
t to h

��

:

L =

1

2

�

(�

�

h

��

)(�

�

h)� (�

�

h

��

)(�

�

h

�

�

) +

1

2

�

��

(�

�

h

��

)(�

�

h

��

)�

1

2

�

��

(�

�

h)(�

�

h)

�

: (6.9)

I will spare you the details.

The linearized �eld equation is of 
ourse G

��

= 8�GT

��

, where G

��

is given by (6.8)

and T

��

is the energy-momentum tensor, 
al
ulated to zeroth order in h

��

. We do not

in
lude higher-order 
orre
tions to the energy-momentum tensor be
ause the amount of

energy and momentummust itself be small for the weak-�eld limit to apply. In other words,

the lowest nonvanishing order in T

��

is automati
ally of the same order of magnitude as the

perturbation. Noti
e that the 
onservation law to lowest order is simply �

�

T

��

= 0. We will

most often be 
on
erned with the va
uum equations, whi
h as usual are just R

��

= 0, where

R

��

is given by (6.6).
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With the linearized �eld equations in hand, we are almost prepared to set about solving

them. First, however, we should deal with the thorny issue of gauge invarian
e. This issue

arises be
ause the demand that g

��

= �

��

+ h

��

does not 
ompletely spe
ify the 
oordinate

system on spa
etime; there may be other 
oordinate systems in whi
h the metri
 
an still

be written as the Minkowski metri
 plus a small perturbation, but the perturbation will be

di�erent. Thus, the de
omposition of the metri
 into a 
at ba
kground plus a perturbation

is not unique.

We 
an think about this from a highbrow point of view. The notion that the linearized

theory 
an be thought of as one governing the behavior of tensor �elds on a 
at ba
kground


an be formalized in terms of a \ba
kground spa
etime" M

b

, a \physi
al spa
etime" M

p

,

and a di�eomorphism � : M

b

! M

p

. As manifolds M

b

and M

p

are \the same" (sin
e

they are di�eomorphi
), but we imagine that they possess some di�erent tensor �elds; on

M

b

we have de�ned the 
at Minkowski metri
 �

��

, while on M

p

we have some metri
 g

��

whi
h obeys Einstein's equations. (We imagine that M

b

is equipped with 
oordinates x

�

and

M

p

is equipped with 
oordinates y

�

, although these will not play a prominent role.) The

di�eomorphism � allows us to move tensors ba
k and forth between the ba
kground and

physi
al spa
etimes. Sin
e we would like to 
onstru
t our linearized theory as one taking

pla
e on the 
at ba
kground spa
etime, we are interested in the pullba
k (�

�

g)

��

of the

physi
al metri
. We 
an de�ne the perturbation as the di�eren
e between the pulled-ba
k

physi
al metri
 and the 
at one:

h

��

= (�

�

g)

��

� �

��

: (6.10)

From this de�nition, there is no reason for the 
omponents of h

��

to be small; however, if the

gravitational �elds onM

p

are weak, then for some di�eomorphisms � we will have jh

��

j << 1.

We therefore limit our attention only to those di�eomorphisms for whi
h this is true. Then

the fa
t that g

��

obeys Einstein's equations on the physi
al spa
etime means that h

��

will

obey the linearized equations on the ba
kground spa
etime (sin
e �, as a di�eomorphism,


an be used to pull ba
k Einstein's equations themselves).

φ
*

φ
*

M M
φb p

(    g)
µν

gαβ
η

µν

In this language, the issue of gauge invarian
e is simply the fa
t that there are a large

number of permissible di�eomorphisms between M

b

and M

p

(where \permissible" means
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that the perturbation is small). Consider a ve
tor �eld �

�

(x) on the ba
kground spa
etime.

This ve
tor �eld generates a one-parameter family of di�eomorphisms  

�

: M

b

! M

b

. For

� suÆ
iently small, if � is a di�eomorphism for whi
h the perturbation de�ned by (6.10) is

small than so will (� Æ  

�

) be, although the perturbation will have a di�erent value.

(      ψ  )φ ε

(      ψ  )φ ε

M Mb p

ψ

*

ε
ξ

µ

Spe
i�
ally, we 
an de�ne a family of perturbations parameterized by �:

h

(�)

��

= [(� Æ  

�

)

�

g℄

��

� �

��

= [ 

��

(�

�

g)℄

��

� �

��

: (6.11)

The se
ond equality is based on the fa
t that the pullba
k under a 
omposition is given by

the 
omposition of the pullba
ks in the opposite order, whi
h follows from the fa
t that the

pullba
k itself moves things in the opposite dire
tion from the original map. Plugging in the

relation (6.10), we �nd

h

(�)

��

=  

��

(h+ �)

��

� �

��

=  

��

(h

��

) +  

��

(�

��

)� �

��

(6.12)

(sin
e the pullba
k of the sum of two tensors is the sum of the pullba
ks). Now we use our

assumption that � is small; in this 
ase  

��

(h

��

) will be equal to h

��

to lowest order, while

the other two terms give us a Lie derivative:

h

(�)

��

=  

��

(h

��

) + �

"

 

��

(�

��

)� �

��

�

#

= h

��

+ �$

�

�

��

= h

��

+ 2��

(�

�

�)

: (6.13)

The last equality follows from our previous 
omputation of the Lie derivative of the metri
,

(5.33), plus the fa
t that 
ovariant derivatives are simply partial derivatives to lowest order.

The in�nitesimal di�eomorphisms �

�

provide a di�erent representation of the same phys-

i
al situation, while maintaining our requirement that the perturbation be small. Therefore,

the result (6.12) tells us what kind of metri
 perturbations denote physi
ally equivalent

spa
etimes | those related to ea
h other by 2��

(�

�

�)

, for some ve
tor �

�

. The invarian
e of
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our theory under su
h transformations is analogous to traditional gauge invarian
e of ele
-

tromagnetism under A

�

! A

�

+ �

�

�. (The analogy is di�erent from the previous analogy

we drew with ele
tromagnetism, relating lo
al Lorentz transformations in the orthonormal-

frame formalism to 
hanges of basis in an internal ve
tor bundle.) In ele
tromagnetism the

invarian
e 
omes about be
ause the �eld strength F

��

= �

�

A

�

� �

�

A

�

is left un
hanged

by gauge transformations; similarly, we �nd that the transformation (6.13) 
hanges the lin-

earized Riemann tensor by

ÆR

����

=

1

2

(�

�

�

�

�

�

�

�

+ �

�

�

�

�

�

�

�

+ �

�

�

�

�

�

�

�

+ �

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

)

= 0 : (6.14)

Our abstra
t derivation of the appropriate gauge transformation for the metri
 perturba-

tion is veri�ed by the fa
t that it leaves the 
urvature (and hen
e the physi
al spa
etime)

un
hanged.

Gauge invarian
e 
an also be understood from the slightly more lowbrow but 
onsiderably

more dire
t route of in�nitesimal 
oordinate transformations. Our di�eomorphism  

�


an

be thought of as 
hanging 
oordinates from x

�

to x

�

� ��

�

. (The minus sign, whi
h is

un
onventional, 
omes from the fa
t that the \new" metri
 is pulled ba
k from a small

distan
e forward along the integral 
urves, whi
h is equivalent to repla
ing the 
oordinates

by those a small distan
e ba
kward along the 
urves.) Following through the usual rules for

transforming tensors under 
oordinate transformations, you 
an derive pre
isely (6.13) |

although you have to 
heat somewhat by equating 
omponents of tensors in two di�erent


oordinate systems. See S
hutz or Weinberg for an example.

When fa
ed with a system that is invariant under some kind of gauge transformations,

our �rst instin
t is to �x a gauge. We have already dis
ussed the harmoni
 
oordinate

system, and will return to it now in the 
ontext of the weak �eld limit. Re
all that this

gauge was spe
i�ed by 2x

�

= 0, whi
h we showed was equivalent to

g

��

�

�

��

= 0 : (6.15)

In the weak �eld limit this be
omes

1

2

�

��

�

��

(�

�

h

��

+ �

�

h

��

� �

�

h

��

) = 0 ; (6.16)

or

�

�

h

�

�

�

1

2

�

�

h = 0 : (6.17)

This 
ondition is also known as Lorentz gauge (or Einstein gauge or Hilbert gauge or de Don-

der gauge or Fo
k gauge). As before, we still have some gauge freedom remaining, sin
e we


an 
hange our 
oordinates by (in�nitesimal) harmoni
 fun
tions.
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In this gauge, the linearized Einstein equations G

��

= 8�GT

��

simplify somewhat, to

2h

��

�

1

2

�

��

2h = �16�GT

��

; (6.18)

while the va
uum equations R

��

= 0 take on the elegant form

2h

��

= 0 ; (6.19)

whi
h is simply the 
onventional relativisti
 wave equation. Together, (6.19) and (6.17)

determine the evolution of a disturban
e in the gravitational �eld in va
uum in the harmoni


gauge.

It is often 
onvenient to work with a slightly di�erent des
ription of the metri
 pertur-

bation. We de�ne the \tra
e-reversed" perturbation

�

h

��

by

�

h

��

= h

��

�

1

2

�

��

h : (6.20)

The name makes sense, sin
e

�

h

�

�

= �h

�

�

. (The Einstein tensor is simply the tra
e-reversed

Ri

i tensor.) In terms of

�

h

��

the harmoni
 gauge 
ondition be
omes

�

�

�

h

�

�

= 0 : (6.21)

The full �eld equations are

2

�

h

��

= �16�GT

��

; (6.22)

from whi
h it follows immediately that the va
uum equations are

2

�

h

��

= 0 : (6.23)

From (6.22) and our previous exploration of the Newtonian limit, it is straightforward to

derive the weak-�eld metri
 for a stationary spheri
al sour
e su
h as a planet or star. Re
all

that previously we found that Einstein's equations predi
ted that h

00

obeyed the Poisson

equation (4.51) in the weak-�eld limit, whi
h implied

h

00

= �2� ; (6.24)

where � is the 
onventional Newtonian potential, � = �GM=r. Let us now assume that

the energy-momentum tensor of our sour
e is dominated by its rest energy density � = T

00

.

(Su
h an assumption is not generally ne
essary in the weak-�eld limit, but will 
ertainly

hold for a planet or star, whi
h is what we would like to 
onsider for the moment.) Then

the other 
omponents of T

��

will be mu
h smaller than T

00

, and from (6.22) the same must

hold for

�

h

��

. If

�

h

00

is mu
h larger than

�

h

ij

, we will have

h = �

�

h = ��

��

�

h

��

=

�

h

00

; (6.25)
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and then from (6.20) we immediately obtain

�

h

00

= 2h

00

= �4� : (6.26)

The other 
omponents of

�

h

��

are negligible, from whi
h we 
an derive

h

i0

=

�

h

i0

�

1

2

�

i0

�

h = 0 ; (6.27)

and

h

ij

=

�

h

ij

�

1

2

�

ij

�

h = �2�Æ

ij

: (6.28)

The metri
 for a star or planet in the weak-�eld limit is therefore

ds

2

= �(1 + 2�)dt

2

+ (1� 2�)(dx

2

+ dy

2

+ dz

2

) : (6.29)

A somewhat less simplisti
 appli
ation of the weak-�eld limit is to gravitational radiation.

Those of you familiar with the analogous problem in ele
tromagnetism will noti
e that the

pro
edure is almost pre
isely the same. We begin by 
onsidering the linearized equations in

va
uum (6.23). Sin
e the 
at-spa
e D'Alembertian has the form 2 = ��

2

t

+ r

2

, the �eld

equation is in the form of a wave equation for

�

h

��

. As all good physi
ists know, the thing to

do when fa
ed with su
h an equation is to write down 
omplex-valued solutions, and then

take the real part at the very end of the day. So we re
ognize that a parti
ularly useful set

of solutions to this wave equation are the plane waves, given by

�

h

��

= C

��

e

ik

�

x

�

; (6.30)

where C

��

is a 
onstant, symmetri
, (0; 2) tensor, and k

�

is a 
onstant ve
tor known as the

wave ve
tor. To 
he
k that it is a solution, we plug in:

0 = 2

�

h

��

= �

��

�

�

�

�

�

h

��

= �

��

�

�

(ik

�

�

h

��

)

= ��

��

k

�

k

�

�

h

��

= �k

�

k

�

�

h

��

: (6.31)

Sin
e (for an interesting solution) not all of the 
omponents of h

��

will be zero everywhere,

we must have

k

�

k

�

= 0 : (6.32)

The plane wave (6.30) is therefore a solution to the linearized equations if the waveve
tor

is null; this is loosely translated into the statement that gravitational waves propagate at

the speed of light. The timelike 
omponent of the wave ve
tor is often referred to as the
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frequen
y of the wave, and we write k

�

= (!; k

1

; k

2

; k

3

). (More generally, an observer

moving with four-velo
ity U

�

would observe the wave to have a frequen
y ! = �k

�

U

�

.)

Then the 
ondition that the wave ve
tor be null be
omes

!

2

= Æ

ij

k

i

k

j

: (6.33)

Of 
ourse our wave is far from the most general solution; any (possibly in�nite) number of

distin
t plane waves 
an be added together and will still solve the linear equation (6.23).

Indeed, any solution 
an be written as su
h a superposition.

There are a number of free parameters to spe
ify the wave: ten numbers for the 
oeÆ
ients

C

��

and three for the null ve
tor k

�

. Mu
h of these are the result of 
oordinate freedom and

gauge freedom, whi
h we now set about eliminating. We begin by imposing the harmoni


gauge 
ondition, (6.21). This implies that

0 = �

�

�

h

��

= �

�

(C

��

e

ik

�

x

�

)

= iC

��

k

�

e

ik

�

x

�

; (6.34)

whi
h is only true if

k

�

C

��

= 0 : (6.35)

We say that the wave ve
tor is orthogonal to C

��

. These are four equations, whi
h redu
e

the number of independent 
omponents of C

��

from ten to six.

Although we have now imposed the harmoni
 gauge 
ondition, there is still some 
oor-

dinate freedom left. Remember that any 
oordinate transformation of the form

x

�

! x

�

+ �

�

(6.36)

will leave the harmoni
 
oordinate 
ondition

2x

�

= 0 (6.37)

satis�ed as long as we have

2�

�

= 0 : (6.38)

Of 
ourse, (6.38) is itself a wave equation for �

�

; on
e we 
hoose a solution, we will have

used up all of our gauge freedom. Let's 
hoose the following solution:

�

�

= B

�

e

ik

�

x

�

; (6.39)

where k

�

is the wave ve
tor for our gravitational wave and the B

�

are 
onstant 
oeÆ
ients.

We now 
laim that this remaining freedom allows us to 
onvert from whatever 
oeÆ
ients

C

(old)

��

that 
hara
terize our gravitational wave to a new set C

(new)

��

, su
h that

C

(new)�

�

= 0 (6.40)
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and

C

(new)

0�

= 0 : (6.41)

(A
tually this last 
ondition is both a 
hoi
e of gauge and a 
hoi
e of Lorentz frame. The


hoi
e of gauge sets U

�

C

(new)

��

= 0 for some 
onstant timelike ve
tor U

�

, while the 
hoi
e of

frame makes U

�

point along the time axis.) Let's see how this is possible by solving expli
itly

for the ne
essary 
oeÆ
ients B

�

. Under the transformation (6.36), the resulting 
hange in

our metri
 perturbation 
an be written

h

(new)

��

= h

(old)

��

� �

�

�

�

� �

�

�

�

; (6.42)

whi
h indu
es a 
hange in the tra
e-reversed perturbation,

�

h

(new)

��

= h

(new)

��

�

1

2

�

��

h

(new)

= h

(old)

��

� �

�

�

�

� �

�

�

�

�

1

2

�

��

(h

(old)

� 2�

�

�

�

)

=

�

h

(old)

��

� �

�

�

�

� �

�

�

�

+ �

��

�

�

�

�

: (6.43)

Using the spe
i�
 forms (6.30) for the solution and (6.39) for the transformation, we obtain

C

(new)

��

= C

(old)

��

� ik

�

B

�

� ik

�

B

�

+ i�

��

k

�

B

�

: (6.44)

Imposing (6.40) therefore means

0 = C

(old)�

�

+ 2ik

�

B

�

; (6.45)

or

k

�

B

�

=

i

2

C

(old)�

�

: (6.46)

Then we 
an impose (6.41), �rst for � = 0:

0 = C

(old)

00

� 2ik

0

B

0

� ik

�

B

�

= C

(old)

00

� 2ik

0

B

0

+

1

2

C

(old)�

�

; (6.47)

or

B

0

= �

i

2k

0

�

C

(old)

00

+

1

2

C

(old)�

�

�

: (6.48)

Then impose (6.41) for � = j:

0 = C

(old)

0j

� ik

0

B

j

� ik

j

B

0

= C

(old)

0j

� ik

0

B

j

� ik

j

�

�i

2k

0

�

C

(old)

00

+

1

2

C

(old)�

�

��

; (6.49)
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or

B

j

=

i

2(k

0

)

2

�

�2k

0

C

(old)

0j

+ k

j

�

C

(old)

00

+

1

2

C

(old)�

�

��

: (6.50)

To 
he
k that these 
hoi
es are mutually 
onsistent, we should plug (6.48) and (6.50) ba
k

into (6.40), whi
h I will leave to you. Let us assume that we have performed this transfor-

mation, and refer to the new 
omponents C

(new)

��

simply as C

��

.

Thus, we began with the ten independent numbers in the symmetri
 matrix C

��

. Choos-

ing harmoni
 gauge implied the four 
onditions (6.35), whi
h brought the number of indepen-

dent 
omponents down to six. Using our remaining gauge freedom led to the one 
ondition

(6.40) and the four 
onditions (6.41); but when � = 0 (6.41) implies (6.35), so we have a

total of four additional 
onstraints, whi
h brings us to two independent 
omponents. We've

used up all of our possible freedom, so these two numbers represent the physi
al information


hara
terizing our plane wave in this gauge. This 
an be seen more expli
itly by 
hoosing

our spatial 
oordinates su
h that the wave is travelling in the x

3

dire
tion; that is,

k

�

= (!; 0; 0; k

3

) = (!; 0; 0; !) ; (6.51)

where we know that k

3

= ! be
ause the wave ve
tor is null. In this 
ase, k

�

C

��

= 0 and

C

0�

= 0 together imply

C

3�

= 0 : (6.52)

The only nonzero 
omponents of C

��

are therefore C

11

, C

12

, C

21

, and C

22

. But C

��

is

tra
eless and symmetri
, so in general we 
an write

C

��

=

0

B

B

B

�

0 0 0 0

0 C

11

C

12

0

0 C

12

�C

11

0

0 0 0 0

1

C

C

C

A

: (6.53)

Thus, for a plane wave in this gauge travelling in the x

3

dire
tion, the two 
omponents C

11

and C

12

(along with the frequen
y !) 
ompletely 
hara
terize the wave.

In using up all of our gauge freedom, we have gone to a subgauge of the harmoni
 gauge

known as the transverse tra
eless gauge (or sometimes \radiation gauge"). The name


omes from the fa
t that the metri
 perturbation is tra
eless and perpendi
ular to the wave

ve
tor. Of 
ourse, we have been working with the tra
e-reversed perturbation

�

h

��

rather

than the perturbation h

��

itself; but sin
e

�

h

��

is tra
eless (be
ause C

��

is), and is equal to

the tra
e-reverse of h

��

, in this gauge we have

�

h

TT

��

= h

TT

��

(transverse tra
eless gauge) : (6.54)

Therefore we 
an drop the bars over h

��

, as long as we are in this gauge.
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One ni
e feature of the transverse tra
eless gauge is that if you are given the 
omponents

of a plane wave in some arbitrary gauge, you 
an easily 
onvert them into the transverse

tra
eless 
omponents. We �rst de�ne a tensor P

��

whi
h a
ts as a proje
tion operator:

P

��

= �

��

� n

�

n

�

: (6.55)

You 
an 
he
k that this proje
ts ve
tors onto hyperplanes orthogonal to the unit ve
tor n

�

.

Here we take n

�

to be a spa
elike unit ve
tor, whi
h we 
hoose to lie along the dire
tion of

propagation of the wave:

n

0

= 0 ; n

j

= k

j

=! : (6.56)

Then the transverse part of some perturbation h

��

is simply the proje
tion P

�

�

P

�

�

h

��

, and

the transverse tra
eless part is obtained by subtra
ting o� the tra
e:

h

TT

��

= P

�

�

P

�

�

h

��

�

1

2

P

��

P

��

h

��

: (6.57)

For details appropriate to more general 
ases, see the dis
ussion in Misner, Thorne and

Wheeler.

To get a feeling for the physi
al e�e
ts due to gravitational waves, it is useful to 
onsider

the motion of test parti
les in the presen
e of a wave. It is 
ertainly insuÆ
ient to solve

for the traje
tory of a single parti
le, sin
e that would only tell us about the values of

the 
oordinates along the world line. (In fa
t, for any single parti
le we 
an �nd transverse

tra
eless 
oordinates in whi
h the parti
le appears stationary to �rst order in h

��

.) To obtain

a 
oordinate-independent measure of the wave's e�e
ts, we 
onsider the relative motion of

nearby parti
les, as des
ribed by the geodesi
 deviation equation. If we 
onsider some nearby

parti
les with four-velo
ities des
ribed by a single ve
tor �eld U

�

(x) and separation ve
tor

S

�

, we have

D

2

d�

2

S

�

= R

�

���

U

�

U

�

S

�

: (6.58)

We would like to 
ompute the left-hand side to �rst order in h

��

. If we take our test

parti
les to be moving slowly then we 
an express the four-velo
ity as a unit ve
tor in the

time dire
tion plus 
orre
tions of order h

��

and higher; but we know that the Riemann tensor

is already �rst order, so the 
orre
tions to U

�

may be ignored, and we write

U

�

= (1; 0; 0; 0) : (6.59)

Therefore we only need to 
ompute R

�

00�

, or equivalently R

�00�

. From (6.5) we have

R

�00�

=

1

2

(�

0

�

0

h

��

+ �

�

�

�

h

00

� �

�

�

0

h

�0

� �

�

�

0

h

�0

) : (6.60)

But h

�0

= 0, so

R

�00�

=

1

2

�

0

�

0

h

��

: (6.61)
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Meanwhile, for our slowly-moving parti
les we have � = x

0

= t to lowest order, so the

geodesi
 deviation equation be
omes

�

2

�t

2

S

�

=

1

2

S

�

�

2

�t

2

h

�

�

: (6.62)

For our wave travelling in the x

3

dire
tion, this implies that only S

1

and S

2

will be a�e
ted

| the test parti
les are only disturbed in dire
tions perpendi
ular to the wave ve
tor. This

is of 
ourse familiar from ele
tromagnetism, where the ele
tri
 and magneti
 �elds in a plane

wave are perpendi
ular to the wave ve
tor.

Our wave is 
hara
terized by the two numbers, whi
h for future 
onvenien
e we will

rename as C

+

= C

11

and C

�

= C

12

. Let's 
onsider their e�e
ts separately, beginning with

the 
ase C

�

= 0. Then we have

�

2

�t

2

S

1

=

1

2

S

1

�

2

�t

2

(C

+

e

ik

�

x

�

) (6.63)

and

�

2

�t

2

S

2

= �

1

2

S

2

�

2

�t

2

(C

+

e

ik

�

x

�

) : (6.64)

These 
an be immediately solved to yield, to lowest order,

S

1

=

�

1 +

1

2

C

+

e

ik

�

x

�

�

S

1

(0) (6.65)

and

S

2

=

�

1 �

1

2

C

+

e

ik

�

x

�

�

S

2

(0) : (6.66)

Thus, parti
les initially separated in the x

1

dire
tion will os
illate ba
k and forth in the x

1

dire
tion, and likewise for those with an initial x

2

separation. That is, if we start with a ring

of stationary parti
les in the x-y plane, as the wave passes they will boun
e ba
k and forth

in the shape of a \+":

x

y

On the other hand, the equivalent analysis for the 
ase where C

+

= 0 but C

�

6= 0 would

yield the solution

S

1

= S

1

(0) +

1

2

C

�

e

ik

�

x

�

S

2

(0) (6.67)
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and

S

2

= S

2

(0) +

1

2

C

�

e

ik

�

x

�

S

1

(0) : (6.68)

In this 
ase the 
ir
le of parti
les would boun
e ba
k and forth in the shape of a \�":

x

y

The notation C

+

and C

�

should therefore be 
lear. These two quantities measure the two

independent modes of linear polarization of the gravitational wave. If we liked we 
ould


onsider right- and left-handed 
ir
ularly polarized modes by de�ning

C

R

=

1

p

2

(C

+

+ iC

�

) ;

C

L

=

1

p

2

(C

+

� iC

�

) : (6.69)

The e�e
t of a pure C

R

wave would be to rotate the parti
les in a right-handed sense,

x

y

and similarly for the left-handed mode C

L

. (Note that the individual parti
les do not travel

around the ring; they just move in little epi
y
les.)

We 
an relate the polarization states of 
lassi
al gravitational waves to the kinds of

parti
les we would expe
t to �nd upon quantization. The ele
tromagneti
 �eld has two in-

dependent polarization states whi
h are des
ribed by ve
tors in the x-y plane; equivalently,

a single polarization mode is invariant under a rotation by 360

Æ

in this plane. Upon quan-

tization this theory yields the photon, a massless spin-one parti
le. The neutrino, on the

other hand, is also a massless parti
le, des
ribed by a �eld whi
h pi
ks up a minus sign

under rotations by 360

Æ

; it is invariant under rotations of 720

Æ

, and we say it has spin-

1

2

.
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The general rule is that the spin S is related to the angle � under whi
h the polarization

modes are invariant by S = 360

Æ

=�. The gravitational �eld, whose waves propagate at the

speed of light, should lead to massless parti
les in the quantum theory. Noti
ing that the

polarization modes we have des
ribed are invariant under rotations of 180

Æ

in the x-y plane,

we expe
t the asso
iated parti
les | \gravitons" | to be spin-2. We are a long way from

dete
ting su
h parti
les (and it would not be a surprise if we never dete
ted them dire
tly),

but any respe
table quantum theory of gravity should predi
t their existen
e.

With plane-wave solutions to the linearized va
uum equations in our possession, it re-

mains to dis
uss the generation of gravitational radiation by sour
es. For this purpose it is

ne
essary to 
onsider the equations 
oupled to matter,

2

�

h

��

= �16�GT

��

: (6.70)

The solution to su
h an equation 
an be obtained using a Green's fun
tion, in pre
isely the

same way as the analogous problem in ele
tromagnetism. Here we will review the outline of

the method.

The Green's fun
tion G(x

�

� y

�

) for the D'Alembertian operator 2 is the solution of the

wave equation in the presen
e of a delta-fun
tion sour
e:

2

x

G(x

�

� y

�

) = Æ

(4)

(x

�

� y

�

) ; (6.71)

where 2

x

denotes the D'Alembertian with respe
t to the 
oordinates x

�

. The usefulness of

su
h a fun
tion resides in the fa
t that the general solution to an equation su
h as (6.70)


an be written

�

h

��

(x

�

) = �16�G

Z

G(x

�

� y

�

)T

��

(y

�

) d

4

y ; (6.72)

as 
an be veri�ed immediately. (Noti
e that no fa
tors of

p

�g are ne
essary, sin
e our

ba
kground is simply 
at spa
etime.) The solutions to (6.71) have of 
ourse been worked

out long ago, and they 
an be thought of as either \retarded" or \advan
ed," depending on

whether they represent waves travelling forward or ba
kward in time. Our interest is in the

retarded Green's fun
tion, whi
h represents the a

umulated e�e
ts of signals to the past of

the point under 
onsideration. It is given by

G(x

�

� y

�

) = �

1

4�jx� yj

Æ[jx� yj � (x

0

� y

0

)℄ �(x

0

� y

0

) : (6.73)

Here we have used boldfa
e to denote the spatial ve
tors x = (x

1

; x

2

; x

3

) and y = (y

1

; y

2

; y

3

),

with norm jx� yj = [Æ

ij

(x

i

� y

i

)(x

j

� y

j

)℄

1=2

. The theta fun
tion �(x

0

� y

0

) equals 1 when

x

0

> y

0

, and zero otherwise. The derivation of (6.73) would take us too far a�eld, but it 
an

be found in any standard text on ele
trodynami
s or partial di�erential equations in physi
s.
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Upon plugging (6.73) into (6.72), we 
an use the delta fun
tion to perform the integral

over y

0

, leaving us with

�

h

��

(t;x) = 4G

Z

1

jx� yj

T

��

(t� jx� yj;y) d

3

y ; (6.74)

where t = x

0

. The term \retarded time" is used to refer to the quantity

t

r

= t� jx� yj : (6.75)

The interpretation of (6.74) should be 
lear: the disturban
e in the gravitational �eld at (t;x)

is a sum of the in
uen
es from the energy and momentum sour
es at the point (t

r

;x � y)

on the past light 
one.

t xi

y i

(t  , y  )i
r

Let us take this general solution and 
onsider the 
ase where the gravitational radiation

is emitted by an isolated sour
e, fairly far away, 
omprised of nonrelativisti
 matter; these

approximations will be made more pre
ise as we go on. First we need to set up some 
on-

ventions for Fourier transforms, whi
h always make life easier when dealing with os
illatory

phenomena. Given a fun
tion of spa
etime �(t;x), we are interested in its Fourier transform

(and inverse) with respe
t to time alone,

e

�(!;x) =

1

p

2�

Z

dt e

i!t

�(t;x) ;

�(t;x) =

1

p

2�

Z

d! e

�i!t

e

�(!;x) : (6.76)

Taking the transform of the metri
 perturbation, we obtain

e

�

h

��

(!;x) =

1

p

2�

Z

dt e

i!t

�

h

��

(t;x)
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=

4G

p

2�

Z

dt d

3

y e

i!t

T

��

(t� jx� yj;y)

jx� yj

=

4G

p

2�

Z

dt

r

d

3

y e

i!t

r

e

i!jx�yj

T

��

(t

r

;y)

jx� yj

= 4G

Z

d

3

y e

i!jx�yj

e

T

��

(!;y)

jx� yj

: (6.77)

In this sequen
e, the �rst equation is simply the de�nition of the Fourier transform, the

se
ond line 
omes from the solution (6.74), the third line is a 
hange of variables from t to

t

r

, and the fourth line is on
e again the de�nition of the Fourier transform.

We now make the approximations that our sour
e is isolated, far away, and slowly moving.

This means that we 
an 
onsider the sour
e to be 
entered at a (spatial) distan
e R, with

the di�erent parts of the sour
e at distan
es R + ÆR su
h that ÆR << R. Sin
e it is

slowly moving, most of the radiation emitted will be at frequen
ies ! suÆ
iently low that

ÆR << !

�1

. (Essentially, light traverses the sour
e mu
h faster than the 
omponents of the

sour
e itself do.)

observer

R

Rδ
source

Under these approximations, the term e

i!jx�yj

=jx�yj 
an be repla
ed by e

i!R

=R and brought

outside the integral. This leaves us with

e

�

h

��

(!;x) = 4G

e

i!R

R

Z

d

3

y

e

T

��

(!;y) : (6.78)

In fa
t there is no need to 
ompute all of the 
omponents of

e

�

h

��

(!;x), sin
e the harmoni


gauge 
ondition �

�

�

h

��

(t;x) = 0 in Fourier spa
e implies

e

�

h

0�

=

i

!

�

i

e

�

h

i�

: (6.79)

We therefore only need to 
on
ern ourselves with the spa
elike 
omponents of

e

�

h

��

(!;x).

From (6.78) we therefore want to take the integral of the spa
elike 
omponents of

e

T

��

(!;y).
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We begin by integrating by parts in reverse:

Z

d

3

y

e

T

ij

(!;y) =

Z

�

k

(y

i

e

T

kj

) d

3

y �

Z

y

i

(�

k

e

T

kj

) d

3

y : (6.80)

The �rst term is a surfa
e integral whi
h will vanish sin
e the sour
e is isolated, while the

se
ond 
an be related to

e

T

0j

by the Fourier-spa
e version of �

�

T

��

= 0:

� �

k

e

T

k�

= i!

e

T

0�

: (6.81)

Thus,

Z

d

3

y

e

T

ij

(!;y) = i!

Z

y

i

e

T

0j

d

3

y

=

i!

2

Z

(y

i

e

T

0j

+ y

j

e

T

0i

) d

3

y

=

i!

2

Z

h

�

l

(y

i

y

j

e

T

0l

)� y

i

y

j

(�

l

e

T

0l

)

i

d

3

y

= �

!

2

2

Z

y

i

y

j

e

T

00

d

3

y : (6.82)

The se
ond line is justi�ed sin
e we know that the left hand side is symmetri
 in i and j,

while the third and fourth lines are simply repetitions of reverse integration by parts and


onservation of T

��

. It is 
onventional to de�ne the quadrupole moment tensor of the

energy density of the sour
e,

q

ij

(t) = 3

Z

y

i

y

j

T

00

(t;y) d

3

y ; (6.83)

a 
onstant tensor on ea
h surfa
e of 
onstant time. In terms of the Fourier transform of the

quadrupole moment, our solution takes on the 
ompa
t form

e

�

h

ij

(!;x) = �

2G!

2

3

e

i!R

R

e

q

ij

(!) ; (6.84)

or, transforming ba
k to t,

�

h

ij

(t;x) = �

1

p

2�

2G

3R

Z

d! e

�i!(t�R)

!

2

e

q

ij

(!)

=

1

p

2�

2G

3R

d

2

dt

2

Z

d! e

�i!t

r

e

q

ij

(!)

=

2G

3R

d

2

q

ij

dt

2

(t

r

) ; (6.85)

where as before t

r

= t�R.

The gravitational wave produ
ed by an isolated nonrelativisti
 obje
t is therefore pro-

portional to the se
ond derivative of the quadrupole moment of the energy density at the
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point where the past light 
one of the observer interse
ts the sour
e. In 
ontrast, the leading


ontribution to ele
tromagneti
 radiation 
omes from the 
hanging dipole moment of the


harge density. The di�eren
e 
an be tra
ed ba
k to the universal nature of gravitation. A


hanging dipole moment 
orresponds to motion of the 
enter of density | 
harge density in

the 
ase of ele
tromagnetism, energy density in the 
ase of gravitation. While there is noth-

ing to stop the 
enter of 
harge of an obje
t from os
illating, os
illation of the 
enter of mass

of an isolated system violates 
onservation of momentum. (You 
an shake a body up and

down, but you and the earth shake ever so slightly in the opposite dire
tion to 
ompensate.)

The quadrupole moment, whi
h measures the shape of the system, is generally smaller than

the dipole moment, and for this reason (as well as the weak 
oupling of matter to gravity)

gravitational radiation is typi
ally mu
h weaker than ele
tromagneti
 radiation.

It is always edu
ational to take a general solution and apply it to a spe
i�
 
ase of

interest. One 
ase of genuine interest is the gravitational radiation emitted by a binary star

(two stars in orbit around ea
h other). For simpli
ity let us 
onsider two stars of massM in

a 
ir
ular orbit in the x

1

-x

2

plane, at distan
e r from their 
ommon 
enter of mass.

x

x

x

M

M

v

v

r r

1

2

3

We will treat the motion of the stars in the Newtonian approximation, where we 
an dis
uss

their orbit just as Kepler would have. Cir
ular orbits are most easily 
hara
terized by

equating the for
e due to gravity to the outward \
entrifugal" for
e:

GM

2

(2r)

2

=

Mv

2

r

; (6.86)

whi
h gives us

v =

�

GM

4r

�

1=2

: (6.87)

The time it takes to 
omplete a single orbit is simply

T =

2�r

v

; (6.88)
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but more useful to us is the angular frequen
y of the orbit,


 =

2�

T

=

�

GM

4r

3

�

1=2

: (6.89)

In terms of 
 we 
an write down the expli
it path of star a,

x

1

a

= r 
os 
t ; x

2

a

= r sin
t ; (6.90)

and star b,

x

1

b

= �r 
os
t ; x

2

b

= �r sin
t : (6.91)

The 
orresponding energy density is

T

00

(t;x) =MÆ(x

3

)

h

Æ(x

1

� r 
os 
t)Æ(x

2

� r sin
t) + Æ(x

1

+ r 
os
t)Æ(x

2

+ r sin
t)

i

:

(6.92)

The profusion of delta fun
tions allows us to integrate this straightforwardly to obtain the

quadrupole moment from (6.83):

q

11

= 6Mr

2


os

2


t = 3Mr

2

(1 + 
os 2
t)

q

22

= 6Mr

2

sin

2


t = 3Mr

2

(1 � 
os 2
t)

q

12

= q

21

= 6Mr

2

(
os 
t)(sin
t) = 3Mr

2

sin 2
t

q

i3

= 0 : (6.93)

From this in turn it is easy to get the 
omponents of the metri
 perturbation from (6.85):

�

h

ij

(t;x) =

8GM

R




2

r

2

0

B

�

� 
os 2
t

r

� sin 2
t

r

0

� sin 2
t

r


os 2
t

r

0

0 0 0

1

C

A

: (6.94)

The remaining 
omponents of

�

h

��


ould be derived from demanding that the harmoni
 gauge


ondition be satis�ed. (We have not imposed a subsidiary gauge 
ondition, so we are still

free to do so.)

It is natural at this point to talk about the energy emitted via gravitational radiation.

Su
h a dis
ussion, however, is immediately beset by problems, both te
hni
al and philo-

sophi
al. As we have mentioned before, there is no true lo
al measure of the energy in

the gravitational �eld. Of 
ourse, in the weak �eld limit, where we think of gravitation as

being des
ribed by a symmetri
 tensor propagating on a �xed ba
kground metri
, we might

hope to derive an energy-momentum tensor for the 
u
tuations h

��

, just as we would for

ele
tromagnetism or any other �eld theory. To some extent this is possible, but there are

still diÆ
ulties. As a result of these diÆ
ulties there are a number of di�erent proposals in

the literature for what we should use as the energy-momentum tensor for gravitation in the
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weak �eld limit; all of them are di�erent, but for the most part they give the same answers

for physi
ally well-posed questions su
h as the rate of energy emitted by a binary system.

At a te
hni
al level, the diÆ
ulties begin to arise when we 
onsider what form the energy-

momentumtensor should take. We have previously mentioned the energy-momentumtensors

for ele
tromagnetism and s
alar �eld theory, and they both shared an important feature |

they were quadrati
 in the relevant �elds. By hypothesis our approa
h to the weak �eld limit

has been to only keep terms whi
h are linear in the metri
 perturbation. Hen
e, in order

to keep tra
k of the energy 
arried by the gravitational waves, we will have to extend our


al
ulations to at least se
ond order in h

��

. In fa
t we have been 
heating slightly all along.

In dis
ussing the e�e
ts of gravitational waves on test parti
les, and the generation of waves

by a binary system, we have been using the fa
t that test parti
les move along geodesi
s. But

as we know, this is derived from the 
ovariant 
onservation of energy-momentum,r

�

T

��

= 0.

In the order to whi
h we have been working, however, we a
tually have �

�

T

��

= 0, whi
h

would imply that test parti
les move on straight lines in the 
at ba
kground metri
. This

is a symptom of the fundamental in
onsisten
y of the weak �eld limit. In pra
ti
e, the best

that 
an be done is to solve the weak �eld equations to some appropriate order, and then

justify after the fa
t the validity of the solution.

Keeping these issues in mind, let us 
onsider Einstein's equations (in va
uum) to se
ond

order, and see how the result 
an be interpreted in terms of an energy-momentum tensor for

the gravitational �eld. If we write the metri
 as g

��

= �

��

+ h

��

, then at �rst order we have

G

(1)

��

[� + h℄ = 0 ; (6.95)

where G

(1)

��

is Einstein's tensor expanded to �rst order in h

��

. These equations determine

h

��

up to (unavoidable) gauge transformations, so in order to satisfy the equations at se
ond

order we have to add a higher-order perturbation, and write

g

��

= �

��

+ h

��

+ h

(2)

��

: (6.96)

The se
ond-order version of Einstein's equations 
onsists of all terms either quadrati
 in h

��

or linear in h

(2)

��

. Sin
e any 
ross terms would be of at least third order, we have

G

(1)

��

[� + h

(2)

℄ +G

(2)

��

[� + h℄ = 0 : (6.97)

Here, G

(2)

��

is the part of the Einstein tensor whi
h is of se
ond order in the metri
 perturba-

tion. It 
an be 
omputed from the se
ond-order Ri

i tensor, whi
h is given by

R

(2)

��

=

1

2

h

��

�

�

�

�

h

��

� h

��

�

�

�

(�

h

�)�

+

1

4

(�

�

h

��

)�

�

h

��

+ (�

�

h

�

�

)�

[�

h

�℄�

+

1

2

�

�

(h

��

�

�

h

��

)�

1

4

(�

�

h

��

)�

�

h� (�

�

h

��

�

1

2

�

�

h)�

(�

h

�)�

: (6.98)



6 WEAK FIELDS AND GRAVITATIONAL RADIATION 162

We 
an 
ast (6.97) into the suggestive form

G

(1)

��

[� + h

(2)

℄ = 8�Gt

��

; (6.99)

simply by de�ning

t

��

= �

1

8�G

G

(2)

��

[� + h℄ : (6.100)

The notation is of 
ourse meant to suggest that we think of t

��

as an energy-momentum

tensor, spe
i�
ally that of the gravitational �eld (at least in the weak �eld regime). To make

this 
laim seem plausible, note that the Bian
hi identity for G

(1)

��

[�+ h

(2)

℄ implies that t

��

is


onserved in the 
at-spa
e sense,

�

�

t

��

= 0 : (6.101)

Unfortunately there are some limitations on our interpretation of t

��

as an energy-

momentum tensor. Of 
ourse it is not a tensor at all in the full theory, but we are leaving

that aside by hypothesis. More importantly, it is not invariant under gauge transformations

(in�nitesimal di�eomorphisms), as you 
ould 
he
k by dire
t 
al
ulation. However, we 
an


onstru
t global quantities whi
h are invariant under 
ertain spe
ial kinds of gauge transfor-

mations (basi
ally, those that vanish suÆ
iently rapidly at in�nity; see Wald). These in
lude

the total energy on a surfa
e � of 
onstant time,

E =

Z

�

t

00

d

3

x ; (6.102)

and the total energy radiated through to in�nity,

�E =

Z

S

t

0�

n

�

d

2

x dt : (6.103)

Here, the integral is taken over a timelike surfa
e S made of a spa
elike two-sphere at in�nity

and some interval in time, and n

�

is a unit spa
elike ve
tor normal to S.

Evaluating these formulas in terms of the quadrupole moment of a radiating sour
e

involves a lengthy 
al
ulation whi
h we will not reprodu
e here. Without further ado, the

amount of radiated energy 
an be written

�E =

Z

P dt ; (6.104)

where the power P is given by

P =

G

45

"

d

3

Q

ij

dt

3

d

3

Q

ij

dt

3

#

t

r

; (6.105)

and here Q

ij

is the tra
eless part of the quadrupole moment,

Q

ij

= q

ij

�

1

3

Æ

ij

Æ

kl

q

kl

: (6.106)
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For the binary system represented by (6.93), the tra
eless part of the quadrupole is

Q

ij

=Mr

2

0

B

�

(1 + 3 
os 2
t) 3 sin 2
t 0

3 sin 2
t (1� 3 
os 2
t) 0

0 0 �2

1

C

A

; (6.107)

and its third time derivative is therefore

d

3

Q

ij

dt

3

= 24Mr

2




3

0

B

�

sin 2
t � 
os 2
t 0

� 
os 2
t � sin 2
t 0

0 0 0

1

C

A

: (6.108)

The power radiated by the binary is thus

P =

2

7

5

GM

2

r

4




6

; (6.109)

or, using expression (6.89) for the frequen
y,

P =

2

5

G

4

M

5

r

5

: (6.110)

Of 
ourse, this has a
tually been observed. In 1974 Hulse and Taylor dis
overed a binary

system, PSR1913+16, in whi
h both stars are very small (so 
lassi
al e�e
ts are negligible, or

at least under 
ontrol) and one is a pulsar. The period of the orbit is eight hours, extremely

small by astrophysi
al standards. The fa
t that one of the stars is a pulsar provides a very

a

urate 
lo
k, with respe
t to whi
h the 
hange in the period as the system loses energy


an be measured. The result is 
onsistent with the predi
tion of general relativity for energy

loss through gravitational radiation. Hulse and Taylor were awarded the Nobel Prize in 1993

for their e�orts.
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7 The S
hwarzs
hild Solution and Bla
k Holes

We now move from the domain of the weak-�eld limit to solutions of the full nonlinear

Einstein's equations. With the possible ex
eption of Minkowski spa
e, by far the most

important su
h solution is that dis
overed by S
hwarzs
hild, whi
h des
ribes spheri
ally

symmetri
 va
uum spa
etimes. Sin
e we are in va
uum, Einstein's equations be
ome R

��

=

0. Of 
ourse, if we have a proposed solution to a set of di�erential equations su
h as this,

it would suÆ
e to plug in the proposed solution in order to verify it; we would like to do

better, however. In fa
t, we will sket
h a proof of Birkho�'s theorem, whi
h states that the

S
hwarzs
hild solution is the unique spheri
ally symmetri
 solution to Einstein's equations

in va
uum. The pro
edure will be to �rst present some non-rigorous arguments that any

spheri
ally symmetri
 metri
 (whether or not it solves Einstein's equations) must take on a


ertain form, and then work from there to more 
arefully derive the a
tual solution in su
h

a 
ase.

\Spheri
ally symmetri
" means \having the same symmetries as a sphere." (In this

se
tion the word \sphere" means S

2

, not spheres of higher dimension.) Sin
e the obje
t of

interest to us is the metri
 on a di�erentiable manifold, we are 
on
erned with those metri
s

that have su
h symmetries. We know how to 
hara
terize symmetries of the metri
 | they

are given by the existen
e of Killing ve
tors. Furthermore, we know what the Killing ve
tors

of S

2

are, and that there are three of them. Therefore, a spheri
ally symmetri
 manifold

is one that has three Killing ve
tor �elds whi
h are just like those on S

2

. By \just like"

we mean that the 
ommutator of the Killing ve
tors is the same in either 
ase | in fan
ier

language, that the algebra generated by the ve
tors is the same. Something that we didn't

show, but is true, is that we 
an 
hoose our three Killing ve
tors on S

2

to be (V

(1)

; V

(2)

; V

(3)

),

su
h that

[V

(1)

; V

(2)

℄ = V

(3)

[V

(2)

; V

(3)

℄ = V

(1)

[V

(3)

; V

(1)

℄ = V

(2)

: (7.1)

The 
ommutation relations are exa
tly those of SO(3), the group of rotations in three di-

mensions. This is no 
oin
iden
e, of 
ourse, but we won't pursue this here. All we need is

that a spheri
ally symmetri
 manifold is one whi
h possesses three Killing ve
tor �elds with

the above 
ommutation relations.

Ba
k in se
tion three we mentioned Frobenius's Theorem, whi
h states that if you have

a set of 
ommuting ve
tor �elds then there exists a set of 
oordinate fun
tions su
h that the

ve
tor �elds are the partial derivatives with respe
t to these fun
tions. In fa
t the theorem

164
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does not stop there, but goes on to say that if we have some ve
tor �elds whi
h do not


ommute, but whose 
ommutator 
loses | the 
ommutator of any two �elds in the set is a

linear 
ombination of other �elds in the set | then the integral 
urves of these ve
tor �elds

\�t together" to des
ribe submanifolds of the manifold on whi
h they are all de�ned. The

dimensionality of the submanifold may be smaller than the number of ve
tors, or it 
ould be

equal, but obviously not larger. Ve
tor �elds whi
h obey (7.1) will of 
ourse form 2-spheres.

Sin
e the ve
tor �elds stret
h throughout the spa
e, every point will be on exa
tly one of

these spheres. (A
tually, it's almost every point | we will show below how it 
an fail to be

absolutely every point.) Thus, we say that a spheri
ally symmetri
 manifold 
an be foliated

into spheres.

Let's 
onsider some examples to bring this down to earth. The simplest example is


at three-dimensional Eu
lidean spa
e. If we pi
k an origin, then R

3

is 
learly spheri
ally

symmetri
 with respe
t to rotations around this origin. Under su
h rotations (i.e., under

the 
ow of the Killing ve
tor �elds) points move into ea
h other, but ea
h point stays on an

S

2

at a �xed distan
e from the origin.

x

y

z

R
3

It is these spheres whi
h foliate R

3

. Of 
ourse, they don't really foliate all of the spa
e, sin
e

the origin itself just stays put under rotations | it doesn't move around on some two-sphere.

But it should be 
lear that almost all of the spa
e is properly foliated, and this will turn out

to be enough for us.

We 
an also have spheri
al symmetry without an \origin" to rotate things around. An

example is provided by a \wormhole", with topology R � S

2

. If we suppress a dimension

and draw our two-spheres as 
ir
les, su
h a spa
e might look like this:
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In this 
ase the entire manifold 
an be foliated by two-spheres.

This foliated stru
ture suggests that we put 
oordinates on our manifold in a way whi
h

is adapted to the foliation. By this we mean that, if we have an n-dimensional manifold

foliated by m-dimensional submanifolds, we 
an use a set of m 
oordinate fun
tions u

i

on

the submanifolds and a set of n�m 
oordinate fun
tions v

I

to tell us whi
h submanifold we

are on. (So i runs from 1 to m, while I runs from 1 to n �m.) Then the 
olle
tion of v's

and u's 
oordinatize the entire spa
e. If the submanifolds are maximally symmetri
 spa
es

(as two-spheres are), then there is the following powerful theorem: it is always possible to


hoose the u-
oordinates su
h that the metri
 on the entire manifold is of the form

ds

2

= g

��

dx

�

dx

�

= g

IJ

(v)dv

I

dv

J

+ f(v)


ij

(u)du

i

du

j

: (7.2)

Here 


ij

(u) is the metri
 on the submanifold. This theorem is saying two things at on
e:

that there are no 
ross terms dv

I

du

j

, and that both g

IJ

(v) and f(v) are fun
tions of the

v

I

alone, independent of the u

i

. Proving the theorem is a mess, but you are en
ouraged

to look in 
hapter 13 of Weinberg. Nevertheless, it is a perfe
tly sensible result. Roughly

speaking, if g

IJ

or f depended on the u

i

then the metri
 would 
hange as we moved in a

single submanifold, whi
h violates the assumption of symmetry. The unwanted 
ross terms,

meanwhile, 
an be eliminated by making sure that the tangent ve
tors �=�v

I

are orthogonal

to the submanifolds | in other words, that we line up our submanifolds in the same way

throughout the spa
e.

We are now through with handwaving, and 
an 
ommen
e some honest 
al
ulation. For

the 
ase at hand, our submanifolds are two-spheres, on whi
h we typi
ally 
hoose 
oordinates

(�; �) in whi
h the metri
 takes the form

d


2

= d�

2

+ sin

2

� d�

2

: (7.3)

Sin
e we are interested in a four-dimensional spa
etime, we need two more 
oordinates, whi
h

we 
an 
all a and b. The theorem (7.2) is then telling us that the metri
 on a spheri
ally
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symmetri
 spa
etime 
an be put in the form

ds

2

= g

aa

(a; b)da

2

+ g

ab

(a; b)(dadb+ dbda) + g

bb

(a; b)db

2

+ r

2

(a; b)d


2

: (7.4)

Here r(a; b) is some as-yet-undetermined fun
tion, to whi
h we have merely given a suggestive

label. There is nothing to stop us, however, from 
hanging 
oordinates from (a; b) to (a; r),

by inverting r(a; b). (The one thing that 
ould possibly stop us would be if r were a fun
tion

of a alone; in this 
ase we 
ould just as easily swit
h to (b; r), so we will not 
onsider this

situation separately.) The metri
 is then

ds

2

= g

aa

(a; r)da

2

+ g

ar

(a; r)(dadr + drda) + g

rr

(a; r)dr

2

+ r

2

d


2

: (7.5)

Our next step is to �nd a fun
tion t(a; r) su
h that, in the (t; r) 
oordinate system, there

are no 
ross terms dtdr + drdt in the metri
. Noti
e that

dt =

�t

�a

da+

�t

�r

dr ; (7.6)

so

dt

2

=

 

�t

�a

!

2

da

2

+

 

�t

�a

! 

�t

�r

!

(dadr + drda) +

 

�t

�r

!

2

dr

2

: (7.7)

We would like to repla
e the �rst three terms in the metri
 (7.5) by

mdt

2

+ ndr

2

; (7.8)

for some fun
tions m and n. This is equivalent to the requirements

m

 

�t

�a

!

2

= g

aa

; (7.9)

n+m

 

�t

�r

!

2

= g

rr

; (7.10)

and

m

 

�t

�a

! 

�t

�r

!

= g

ar

: (7.11)

We therefore have three equations for the three unknowns t(a; r), m(a; r), and n(a; r), just

enough to determine them pre
isely (up to initial 
onditions for t). (Of 
ourse, they are

\determined" in terms of the unknown fun
tions g

aa

, g

ar

, and g

rr

, so in this sense they are

still undetermined.) We 
an therefore put our metri
 in the form

ds

2

= m(t; r)dt

2

+ n(t; r)dr

2

+ r

2

d


2

: (7.12)
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To this point the only di�eren
e between the two 
oordinates t and r is that we have


hosen r to be the one whi
h multiplies the metri
 for the two-sphere. This 
hoi
e was

motivated by what we know about the metri
 for 
at Minkowski spa
e, whi
h 
an be written

ds

2

= �dt

2

+ dr

2

+ r

2

d


2

. We know that the spa
etime under 
onsideration is Lorentzian,

so either m or n will have to be negative. Let us 
hoose m, the 
oeÆ
ient of dt

2

, to be

negative. This is not a 
hoi
e we are simply allowed to make, and in fa
t we will see later

that it 
an go wrong, but we will assume it for now. The assumption is not 
ompletely

unreasonable, sin
e we know that Minkowski spa
e is itself spheri
ally symmetri
, and will

therefore be des
ribed by (7.12). With this 
hoi
e we 
an trade in the fun
tions m and n for

new fun
tions � and �, su
h that

ds

2

= �e

2�(t;r)

dt

2

+ e

2�(t;r)

dr

2

+ r

2

d


2

: (7.13)

This is the best we 
an do for a general metri
 in a spheri
ally symmetri
 spa
etime. The

next step is to a
tually solve Einstein's equations, whi
h will allow us to determine expli
itly

the fun
tions �(t; r) and �(t; r). It is unfortunately ne
essary to 
ompute the Christo�el

symbols for (7.13), from whi
h we 
an get the 
urvature tensor and thus the Ri

i tensor. If

we use labels (0; 1; 2; 3) for (t; r; �; �) in the usual way, the Christo�el symbols are given by

�

0

00

= �

0

� �

0

01

= �

1

� �

0

11

= e

2(���)

�

0

�

�

1

00

= e

2(���)

�

1

� �

1

01

= �

0

� �

1

11

= �

1

�

�

2

12

=

1

r

�

1

22

= �re

�2�

�

3

13

=

1

r

�

1

33

= �re

�2�

sin

2

� �

2

33

= � sin � 
os � �

3

23

=


os �

sin �

: (7.14)

(Anything not written down expli
itly is meant to be zero, or related to what is written

by symmetries.) From these we get the following nonvanishing 
omponents of the Riemann

tensor:

R

0

101

= e

2(���)

[�

2

0

� + (�

0

�)

2

� �

0

��

0

�℄ + [�

1

��

1

� � �

2

1

�� (�

1

�)

2

℄

R

0

202

= �re

�2�

�

1

�

R

0

303

= �re

�2�

sin

2

� �

1

�

R

0

212

= �re

�2�

�

0

�

R

0

313

= �re

�2�

sin

2

� �

0

�

R

1

212

= re

�2�

�

1

�

R

1

313

= re

�2�

sin

2

� �

1

�

R

2

323

= (1� e

�2�

) sin

2

� : (7.15)

Taking the 
ontra
tion as usual yields the Ri

i tensor:

R

00

= [�

2

0

� + (�

0

�)

2

� �

0

��

0

�℄ + e

2(���)

[�

2

1

� + (�

1

�)

2

� �

1

��

1

� +

2

r

�

1

�℄



7 THE SCHWARZSCHILD SOLUTION AND BLACK HOLES 169

R

11

= �[�

2

1

�+ (�

1

�)

2

� �

1

��

1

� �

2

r

�

1

�℄ + e

2(���)

[�

2

0

� + (�

0

�)

2

� �

0

��

0

�℄

R

01

=

2

r

�

0

�

R

22

= e

�2�

[r(�

1

� � �

1

�)� 1℄ + 1

R

33

= R

22

sin

2

� : (7.16)

Our job is to set R

��

= 0. From R

01

= 0 we get

�

0

� = 0 : (7.17)

If we 
onsider taking the time derivative of R

22

= 0 and using �

0

� = 0, we get

�

0

�

1

� = 0 : (7.18)

We 
an therefore write

� = �(r)

� = f(r) + g(t) : (7.19)

The �rst term in the metri
 (7.13) is therefore �e

2f(r)

e

2g(t)

dt

2

. But we 
ould always simply

rede�ne our time 
oordinate by repla
ing dt! e

�g(t)

dt; in other words, we are free to 
hoose

t su
h that g(t) = 0, when
e �(t; r) = f(r). We therefore have

ds

2

= �e

2�(r)

dt

2

+ e

�(r)

dr

2

+ r

2

d


2

: (7.20)

All of the metri
 
omponents are independent of the 
oordinate t. We have therefore proven

a 
ru
ial result: any spheri
ally symmetri
 va
uum metri
 possesses a timelike Killing ve
tor.

This property is so interesting that it gets its own name: a metri
 whi
h possesses a

timelike Killing ve
tor is 
alled stationary. There is also a more restri
tive property: a

metri
 is 
alled stati
 if it possesses a timelike Killing ve
tor whi
h is orthogonal to a

family of hypersurfa
es. (A hypersurfa
e in an n-dimensional manifold is simply an (n� 1)-

dimensional submanifold.) The metri
 (7.20) is not only stationary, but also stati
; the

Killing ve
tor �eld �

0

is orthogonal to the surfa
es t = 
onst (sin
e there are no 
ross terms

su
h as dtdr and so on). Roughly speaking, a stati
 metri
 is one in whi
h nothing is moving,

while a stationary metri
 allows things to move but only in a symmetri
 way. For example,

the stati
 spheri
ally symmetri
 metri
 (7.20) will des
ribe non-rotating stars or bla
k holes,

while rotating systems (whi
h keep rotating in the same way at all times) will be des
ribed

by stationary metri
s. It's hard to remember whi
h word goes with whi
h 
on
ept, but the

distin
tion between the two 
on
epts should be understandable.

Let's keep going with �nding the solution. Sin
e both R

00

and R

11

vanish, we 
an write

0 = e

2(���)

R

00

+R

11

=

2

r

(�

1

� + �

1

�) ; (7.21)
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whi
h implies � = �� + 
onstant. On
e again, we 
an get rid of the 
onstant by s
aling

our 
oordinates, so we have

� = �� : (7.22)

Next let us turn to R

22

= 0, whi
h now reads

e

2�

(2r�

1

� + 1) = 1 : (7.23)

This is 
ompletely equivalent to

�

1

(re

2�

) = 1 : (7.24)

We 
an solve this to obtain

e

2�

= 1 +

�

r

; (7.25)

where � is some undetermined 
onstant. With (7.22) and (7.25), our metri
 be
omes

ds

2

= �

�

1 +

�

r

�

dt

2

+

�

1 +

�

r

�

�1

dr

2

+ r

2

d


2

: (7.26)

We now have no freedom left ex
ept for the single 
onstant �, so this form better solve the

remaining equations R

00

= 0 and R

11

= 0; it is straightforward to 
he
k that it does, for any

value of �.

The only thing left to do is to interpret the 
onstant � in terms of some physi
al param-

eter. The most important use of a spheri
ally symmetri
 va
uum solution is to represent the

spa
etime outside a star or planet or whatnot. In that 
ase we would expe
t to re
over the

weak �eld limit as r!1. In this limit, (7.26) implies

g

00

(r!1) = �

�

1 +

�

r

�

;

g

rr

(r!1) =

�

1�

�

r

�

: (7.27)

The weak �eld limit, on the other hand, has

g

00

= � (1 + 2�) ;

g

rr

= (1 � 2�) ; (7.28)

with the potential � = �GM=r. Therefore the metri
s do agree in this limit, if we set

� = �2GM .

Our �nal result is the 
elebrated S
hwarzs
hild metri
,

ds

2

= �

�

1 �

2GM

r

�

dt

2

+

�

1�

2GM

r

�

�1

dr

2

+ r

2

d


2

: (7.29)

This is true for any spheri
ally symmetri
 va
uum solution to Einstein's equations; M fun
-

tions as a parameter, whi
h we happen to know 
an be interpreted as the 
onventional
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Newtonian mass that we would measure by studying orbits at large distan
es from the grav-

itating sour
e. Note that as M ! 0 we re
over Minkowski spa
e, whi
h is to be expe
ted.

Note also that the metri
 be
omes progressively Minkowskian as we go to r ! 1; this

property is known as asymptoti
 
atness.

The fa
t that the S
hwarzs
hild metri
 is not just a good solution, but is the unique

spheri
ally symmetri
 va
uum solution, is known asBirkho�'s theorem. It is interesting to

note that the result is a stati
 metri
. We did not say anything about the sour
e ex
ept that

it be spheri
ally symmetri
. Spe
i�
ally, we did not demand that the sour
e itself be stati
;

it 
ould be a 
ollapsing star, as long as the 
ollapse were symmetri
. Therefore a pro
ess

su
h as a supernova explosion, whi
h is basi
ally spheri
al, would be expe
ted to generate

very little gravitational radiation (in 
omparison to the amount of energy released through

other 
hannels). This is the same result we would have obtained in ele
tromagnetism, where

the ele
tromagneti
 �elds around a spheri
al 
harge distribution do not depend on the radial

distribution of the 
harges.

Before exploring the behavior of test parti
les in the S
hwarzs
hild geometry, we should

say something about singularities. From the form of (7.29), the metri
 
oeÆ
ients be
ome

in�nite at r = 0 and r = 2GM | an apparent sign that something is going wrong. The

metri
 
oeÆ
ients, of 
ourse, are 
oordinate-dependent quantities, and as su
h we should

not make too mu
h of their values; it is 
ertainly possible to have a \
oordinate singularity"

whi
h results from a breakdown of a spe
i�
 
oordinate system rather than the underlying

manifold. An example o

urs at the origin of polar 
oordinates in the plane, where the

metri
 ds

2

= dr

2

+ r

2

d�

2

be
omes degenerate and the 
omponent g

��

= r

�2

of the inverse

metri
 blows up, even though that point of the manifold is no di�erent from any other.

What kind of 
oordinate-independent signal should we look for as a warning that some-

thing about the geometry is out of 
ontrol? This turns out to be a diÆ
ult question to

answer, and entire books have been written about the nature of singularities in general rel-

ativity. We won't go into this issue in detail, but rather turn to one simple 
riterion for

when something has gone wrong | when the 
urvature be
omes in�nite. The 
urvature is

measured by the Riemann tensor, and it is hard to say when a tensor be
omes in�nite, sin
e

its 
omponents are 
oordinate-dependent. But from the 
urvature we 
an 
onstru
t various

s
alar quantities, and sin
e s
alars are 
oordinate-independent it will be meaningful to say

that they be
ome in�nite. This simplest su
h s
alar is the Ri

i s
alar R = g

��

R

��

, but we


an also 
onstru
t higher-order s
alars su
h as R

��

R

��

, R

����

R

����

, R

����

R

����

R

��

��

, and

so on. If any of these s
alars (not ne
essarily all of them) go to in�nity as we approa
h some

point, we will regard that point as a singularity of the 
urvature. We should also 
he
k that

the point is not \in�nitely far away"; that is, that it 
an be rea
hed by travelling a �nite

distan
e along a 
urve.

We therefore have a suÆ
ient 
ondition for a point to be 
onsidered a singularity. It is
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not a ne
essary 
ondition, however, and it is generally harder to show that a given point is

nonsingular; for our purposes we will simply test to see if geodesi
s are well-behaved at the

point in question, and if so then we will 
onsider the point nonsingular. In the 
ase of the

S
hwarzs
hild metri
 (7.29), dire
t 
al
ulation reveals that

R

����

R

����

=

12G

2

M

2

r

6

: (7.30)

This is enough to 
onvin
e us that r = 0 represents an honest singularity. At the other

trouble spot, r = 2GM , you 
ould 
he
k and see that none of the 
urvature invariants blows

up. We therefore begin to think that it is a
tually not singular, and we have simply 
hosen a

bad 
oordinate system. The best thing to do is to transform to more appropriate 
oordinates

if possible. We will soon see that in this 
ase it is in fa
t possible, and the surfa
e r = 2GM

is very well-behaved (although interesting) in the S
hwarzs
hild metri
.

Having worried a little about singularities, we should point out that the behavior of

S
hwarzs
hild at r � 2GM is of little day-to-day 
onsequen
e. The solution we derived

is valid only in va
uum, and we expe
t it to hold outside a spheri
al body su
h as a star.

However, in the 
ase of the Sun we are dealing with a body whi
h extends to a radius of

R

�

= 10

6

GM

�

: (7.31)

Thus, r = 2GM

�

is far inside the solar interior, where we do not expe
t the S
hwarzs
hild

metri
 to imply. In fa
t, realisti
 stellar interior solutions are of the form

ds

2

= �

 

1�

2Gm(r)

r

!

dt

2

+

 

1 �

2Gm(r)

r

!

�1

dr

2

+ r

2

d


2

: (7.32)

See S
hutz for details. Here m(r) is a fun
tion of r whi
h goes to zero faster than r itself, so

there are no singularities to deal with at all. Nevertheless, there are obje
ts for whi
h the full

S
hwarzs
hild metri
 is required | bla
k holes | and therefore we will let our imaginations

roam far outside the solar system in this se
tion.

The �rst step we will take to understand this metri
 more fully is to 
onsider the behavior

of geodesi
s. We need the nonzero Christo�el symbols for S
hwarzs
hild:

�

1

00

=

GM

r

3

(r � 2GM) �

1

11

=

�GM

r(r�2GM)

�

0

01

=

GM

r(r�2GM)

�

2

12

=

1

r

�

1

22

= �(r � 2GM) �

3

13

=

1

r

�

1

33

= �(r � 2GM) sin

2

� �

2

33

= � sin � 
os � �

3

23

=


os �

sin �

: (7.33)

The geodesi
 equation therefore turns into the following four equations, where � is an aÆne

parameter:

d

2

t

d�

2

+

2GM

r(r � 2GM)

dr

d�

dt

d�

= 0 ; (7.34)
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d

2

r

d�

2

+

GM

r

3

(r � 2GM)

 

dt

d�

!

2

�

GM

r(r � 2GM)

 

dr

d�

!

2

�(r � 2GM)

2

4

 

d�

d�

!

2

+ sin

2

�

 

d�

d�

!

2

3

5

= 0 ; (7.35)

d

2

�

d�

2

+

2

r

d�

d�

dr

d�

� sin � 
os �

 

d�

d�

!

2

= 0 ; (7.36)

and

d

2

�

d�

2

+

2

r

d�

d�

dr

d�

+ 2


os �

sin �

d�

d�

d�

d�

= 0 : (7.37)

There does not seem to be mu
h hope for simply solving this set of 
oupled equations by

inspe
tion. Fortunately our task is greatly simpli�ed by the high degree of symmetry of the

S
hwarzs
hild metri
. We know that there are four Killing ve
tors: three for the spheri
al

symmetry, and one for time translations. Ea
h of these will lead to a 
onstant of the motion

for a free parti
le; if K

�

is a Killing ve
tor, we know that

K

�

dx

�

d�

= 
onstant : (7.38)

In addition, there is another 
onstant of the motion that we always have for geodesi
s; metri



ompatibility implies that along the path the quantity

� = �g

��

dx

�

d�

dx

�

d�

(7.39)

is 
onstant. Of 
ourse, for a massive parti
le we typi
ally 
hoose � = � , and this relation

simply be
omes � = �g

��

U

�

U

�

= +1. For a massless parti
le we always have � = 0. We will

also be 
on
erned with spa
elike geodesi
s (even though they do not 
orrespond to paths of

parti
les), for whi
h we will 
hoose � = �1.

Rather than immediatelywriting out expli
it expressions for the four 
onserved quantities

asso
iated with Killing ve
tors, let's think about what they are telling us. Noti
e that the

symmetries they represent are also present in 
at spa
etime, where the 
onserved quantities

they lead to are very familiar. Invarian
e under time translations leads to 
onservation of

energy, while invarian
e under spatial rotations leads to 
onservation of the three 
omponents

of angular momentum. Essentially the same applies to the S
hwarzs
hild metri
. We 
an

think of the angular momentum as a three-ve
tor with a magnitude (one 
omponent) and

dire
tion (two 
omponents). Conservation of the dire
tion of angular momentum means

that the parti
le will move in a plane. We 
an 
hoose this to be the equatorial plane of

our 
oordinate system; if the parti
le is not in this plane, we 
an rotate 
oordinates until

it is. Thus, the two Killing ve
tors whi
h lead to 
onservation of the dire
tion of angular

momentum imply

� =

�

2

: (7.40)
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The two remaining Killing ve
tors 
orrespond to energy and the magnitude of angular mo-

mentum. The energy arises from the timelike Killing ve
tor K = �

t

, or

K

�

=

�

�

�

1�

2GM

r

�

; 0; 0; 0

�

: (7.41)

The Killing ve
tor whose 
onserved quantity is the magnitude of the angular momentum is

L = �

�

, or

L

�

=

�

0; 0; 0; r

2

sin

2

�

�

: (7.42)

Sin
e (7.40) implies that sin � = 1 along the geodesi
s of interest to us, the two 
onserved

quantities are

�

1�

2GM

r

�

dt

d�

= E ; (7.43)

and

r

2

d�

d�

= L : (7.44)

For massless parti
les these 
an be thought of as the energy and angular momentum; for

massive parti
les they are the energy and angular momentum per unit mass of the parti
le.

Note that the 
onstan
y of (7.44) is the GR equivalent of Kepler's se
ond law (equal areas

are swept out in equal times).

Together these 
onserved quantities provide a 
onvenient way to understand the orbits of

parti
les in the S
hwarzs
hild geometry. Let us expand the expression (7.39) for � to obtain

�

�

1�

2GM

r

�

 

dt

d�

!

2

+

�

1�

2GM

r

�

�1

 

dr

d�

!

2

+ r

2

 

d�

d�

!

2

= �� : (7.45)

If we multiply this by (1� 2GM=r) and use our expressions for E and L, we obtain

�E

2

+

 

dr

d�

!

2

+

�

1�

2GM

r

�

 

L

2

r

2

+ �

!

= 0 : (7.46)

This is 
ertainly progress, sin
e we have taken a messy system of 
oupled equations and

obtained a single equation for r(�). It looks even ni
er if we rewrite it as

1

2

 

dr

d�

!

2

+ V (r) =

1

2

E

2

; (7.47)

where

V (r) =

1

2

�� �

GM

r

+

L

2

2r

2

�

GML

2

r

3

: (7.48)

In (7.47) we have pre
isely the equation for a 
lassi
al parti
le of unit mass and \energy"

1

2

E

2

moving in a one-dimensional potential given by V (r). (The true energy per unit mass

is E, but the e�e
tive potential for the 
oordinate r responds to

1

2

E

2

.)
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Of 
ourse, our physi
al situation is quite di�erent from a 
lassi
al parti
le moving in one

dimension. The traje
tories under 
onsideration are orbits around a star or other obje
t:

λ
λr(   )

r(   )

The quantities of interest to us are not only r(�), but also t(�) and �(�). Nevertheless,

we 
an go a long way toward understanding all of the orbits by understanding their radial

behavior, and it is a great help to redu
e this behavior to a problem we know how to solve.

A similar analysis of orbits in Newtonian gravity would have produ
ed a similar result;

the general equation (7.47) would have been the same, but the e�e
tive potential (7.48) would

not have had the last term. (Note that this equation is not a power series in 1=r, it is exa
t.)

In the potential (7.48) the �rst term is just a 
onstant, the se
ond term 
orresponds exa
tly

to the Newtonian gravitational potential, and the third term is a 
ontribution from angular

momentumwhi
h takes the same form in Newtonian gravity and general relativity. The last

term, the GR 
ontribution, will turn out to make a great deal of di�eren
e, espe
ially at

small r.

Let us examine the kinds of possible orbits, as illustrated in the �gures. There are

di�erent 
urves V (r) for di�erent values of L; for any one of these 
urves, the behavior of

the orbit 
an be judged by 
omparing the

1

2

E

2

to V (r). The general behavior of the parti
le

will be to move in the potential until it rea
hes a \turning point" where V (r) =

1

2

E

2

, where

it will begin moving in the other dire
tion. Sometimes there may be no turning point to

hit, in whi
h 
ase the parti
le just keeps going. In other 
ases the parti
le may simply move

in a 
ir
ular orbit at radius r




= 
onst; this 
an happen if the potential is 
at, dV=dr = 0.

Di�erentiating (7.48), we �nd that the 
ir
ular orbits o

ur when

�GMr

2




� L

2

r




+ 3GML

2


 = 0 ; (7.49)

where 
 = 0 in Newtonian gravity and 
 = 1 in general relativity. Cir
ular orbits will be

stable if they 
orrespond to a minimum of the potential, and unstable if they 
orrespond

to a maximum. Bound orbits whi
h are not 
ir
ular will os
illate around the radius of the

stable 
ir
ular orbit.

Turning to Newtonian gravity, we �nd that 
ir
ular orbits appear at

r




=

L

2

�GM

: (7.50)
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For massless parti
les � = 0, and there are no 
ir
ular orbits; this is 
onsistent with the

�gure, whi
h illustrates that there are no bound orbits of any sort. Although it is somewhat

obs
ured in this 
oordinate system, massless parti
les a
tually move in a straight line, sin
e

the Newtonian gravitational for
e on a massless parti
le is zero. (Of 
ourse the standing of

massless parti
les in Newtonian theory is somewhat problemati
, but we will ignore that for

now.) In terms of the e�e
tive potential, a photon with a given energy E will 
ome in from

r =1 and gradually \slow down" (a
tually dr=d� will de
rease, but the speed of light isn't


hanging) until it rea
hes the turning point, when it will start moving away ba
k to r =1.

The lower values of L, for whi
h the photon will 
ome 
loser before it starts moving away,

are simply those traje
tories whi
h are initially aimed 
loser to the gravitating body. For

massive parti
les there will be stable 
ir
ular orbits at the radius (7.50), as well as bound

orbits whi
h os
illate around this radius. If the energy is greater than the asymptoti
 value

E = 1, the orbits will be unbound, des
ribing a parti
le that approa
hes the star and then

re
edes. We know that the orbits in Newton's theory are 
oni
 se
tions | bound orbits are

either 
ir
les or ellipses, while unbound ones are either parabolas or hyperbolas | although

we won't show that here.

In general relativity the situation is di�erent, but only for r suÆ
iently small. Sin
e the

di�eren
e resides in the term �GML

2

=r

3

, as r !1 the behaviors are identi
al in the two

theories. But as r ! 0 the potential goes to �1 rather than +1 as in the Newtonian


ase. At r = 2GM the potential is always zero; inside this radius is the bla
k hole, whi
h we

will dis
uss more thoroughly later. For massless parti
les there is always a barrier (ex
ept

for L = 0, for whi
h the potential vanishes identi
ally), but a suÆ
iently energeti
 photon

will nevertheless go over the barrier and be dragged inexorably down to the 
enter. (Note

that \suÆ
iently energeti
" means \in 
omparison to its angular momentum" | in fa
t the

frequen
y of the photon is immaterial, only the dire
tion in whi
h it is pointing.) At the top

of the barrier there are unstable 
ir
ular orbits. For � = 0, 
 = 1, we 
an easily solve (7.49)

to obtain

r




= 3GM : (7.51)

This is borne out by the �gure, whi
h shows a maximum of V (r) at r = 3GM for every L.

This means that a photon 
an orbit forever in a 
ir
le at this radius, but any perturbation

will 
ause it to 
y away either to r = 0 or r =1.

For massive parti
les there are on
e again di�erent regimes depending on the angular

momentum. The 
ir
ular orbits are at

r




=

L

2

�

p

L

4

� 12G

2

M

2

L

2

2GM

: (7.52)

For large L there will be two 
ir
ular orbits, one stable and one unstable. In the L ! 1
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limit their radii are given by

r




=

L

2

� L

2

(1 � 6G

2

M

2

=L

2

)

2GM

=

 

L

2

GM

; 3GM

!

: (7.53)

In this limit the stable 
ir
ular orbit be
omes farther and farther away, while the unstable

one approa
hes 3GM , behavior whi
h parallels the massless 
ase. As we de
rease L the two


ir
ular orbits 
ome 
loser together; they 
oin
ide when the dis
riminant in (7.52) vanishes,

at

L =

p

12GM ; (7.54)

for whi
h

r




= 6GM ; (7.55)

and disappear entirely for smaller L. Thus 6GM is the smallest possible radius of a stable


ir
ular orbit in the S
hwarzs
hild metri
. There are also unbound orbits, whi
h 
ome in

from in�nity and turn around, and bound but non
ir
ular ones, whi
h os
illate around the

stable 
ir
ular radius. Note that su
h orbits, whi
h would des
ribe exa
t 
oni
 se
tions in

Newtonian gravity, will not do so in GR, although we would have to solve the equation for

d�=dt to demonstrate it. Finally, there are orbits whi
h 
ome in from in�nity and 
ontinue

all the way in to r = 0; this 
an happen either if the energy is higher than the barrier, or for

L <

p

12GM , when the barrier goes away entirely.

We have therefore found that the S
hwarzs
hild solution possesses stable 
ir
ular orbits

for r > 6GM and unstable 
ir
ular orbits for 3GM < r < 6GM . It's important to remember

that these are only the geodesi
s; there is nothing to stop an a

elerating parti
le from

dipping below r = 3GM and emerging, as long as it stays beyond r = 2GM .

Most experimental tests of general relativity involve the motion of test parti
les in the

solar system, and hen
e geodesi
s of the S
hwarzs
hild metri
; this is therefore a good pla
e

to pause and 
onsider these tests. Einstein suggested three tests: the de
e
tion of light,

the pre
ession of perihelia, and gravitational redshift. The de
e
tion of light is observable

in the weak-�eld limit, and therefore is not really a good test of the exa
t form of the

S
hwarzs
hild geometry. Observations of this de
e
tion have been performed during e
lipses

of the Sun, with results whi
h agree with the GR predi
tion (although it's not an espe
ially


lean experiment). The pre
ession of perihelia re
e
ts the fa
t that non
ir
ular orbits are

not 
losed ellipses; to a good approximation they are ellipses whi
h pre
ess, des
ribing a


ower pattern.

Using our geodesi
 equations, we 
ould solve for d�=d� as a power series in the e

entri
ity

e of the orbit, and from that obtain the apsidal frequen
y !

a

, de�ned as 2� divided by the

time it takes for the ellipse to pre
ess on
e around. For details you 
an look in Weinberg;

the answer is

!

a

=

3(GM)

3=2




2

(1� e

2

)r

5=2

; (7.56)
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where we have restored the 
 to make it easier to 
ompare with observation. (It is a good

exer
ise to derive this yourself to lowest nonvanishing order, in whi
h 
ase the e

2

is missing.)

Histori
ally the pre
ession of Mer
ury was the �rst test of GR. For Mer
ury the relevant

numbers are

GM

�




2

= 1:48 � 10

5


m ;

a = 5:55 � 10

12


m ; (7.57)

and of 
ourse 
 = 3:00 � 10

10


m/se
. This gives !

a

= 2:35 � 10

�14

se


�1

. In other words,

the major axis of Mer
ury's orbit pre
esses at a rate of 42:9 ar
se
s every 100 years. The

observed value is 5601 ar
se
s/100 yrs. However, mu
h of that is due to the pre
ession

of equinoxes in our geo
entri
 
oordinate system; 5025 ar
se
s/100 yrs, to be pre
ise. The

gravitational perturbations of the other planets 
ontribute an additional 532 ar
se
s/100 yrs,

leaving 43 ar
se
s/100 yrs to be explained by GR, whi
h it does quite well.

The gravitational redshift, as we have seen, is another e�e
t whi
h is present in the weak

�eld limit, and in fa
t will be predi
ted by any theory of gravity whi
h obeys the Prin
iple

of Equivalen
e. However, this only applies to small enough regions of spa
etime; over larger

distan
es, the exa
t amount of redshift will depend on the metri
, and thus on the theory

under question. It is therefore worth 
omputing the redshift in the S
hwarzs
hild geometry.

We 
onsider two observers who are not moving on geodesi
s, but are stu
k at �xed spatial


oordinate values (r

1

; �

1

; �

1

) and (r

2

; �

2

; �

2

). A

ording to (7.45), the proper time of observer

i will be related to the 
oordinate time t by

d�

i

dt

=

�

1 �

2GM

r

i

�

1=2

: (7.58)

Suppose that the observer O

1

emits a light pulse whi
h travels to the observer O

2

, su
h that

O

1

measures the time between two su

essive 
rests of the light wave to be ��

1

. Ea
h 
rest

follows the same path to O

2

, ex
ept that they are separated by a 
oordinate time

�t =

�

1�

2GM

r

1

�

�1=2

��

1

: (7.59)
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This separation in 
oordinate time does not 
hange along the photon traje
tories, but the

se
ond observer measures a time between su

essive 
rests given by

��

2

=

�

1 �

2GM

r

2

�

1=2

�t

=

 

1� 2GM=r

2

1� 2GM=r

1

!

1=2

��

1

: (7.60)

Sin
e these intervals ��

i

measure the proper time between two 
rests of an ele
tromagneti


wave, the observed frequen
ies will be related by

!

2

!

1

=

��

1

��

2

=

 

1� 2GM=r

1

1� 2GM=r

2

!

1=2

: (7.61)

This is an exa
t result for the frequen
y shift; in the limit r >> 2GM we have

!

2

!

1

= 1�

GM

r

1

+

GM

r

2

= 1 + �

1

� �

2

: (7.62)

This tells us that the frequen
y goes down as � in
reases, whi
h happens as we 
limb out

of a gravitational �eld; thus, a redshift. You 
an 
he
k that it agrees with our previous


al
ulation based on the equivalen
e prin
iple.

Sin
e Einstein's proposal of the three 
lassi
 tests, further tests of GR have been proposed.

The most famous is of 
ourse the binary pulsar, dis
ussed in the previous se
tion. Another

is the gravitational time delay, dis
overed by (and observed by) Shapiro. This is just the

fa
t that the time elapsed along two di�erent traje
tories between two events need not be

the same. It has been measured by re
e
ting radar signals o� of Venus and Mars, and on
e

again is 
onsistent with the GR predi
tion. One e�e
t whi
h has not yet been observed is

the Lense-Thirring, or frame-dragging e�e
t. There has been a long-term e�ort devoted to

a proposed satellite, dubbed Gravity Probe B, whi
h would involve extraordinarily pre
ise

gyros
opes whose pre
ession 
ould be measured and the 
ontribution from GR sorted out. It

has a ways to go before being laun
hed, however, and the survival of su
h proje
ts is always

year-to-year.

We now know something about the behavior of geodesi
s outside the troublesome radius

r = 2GM , whi
h is the regime of interest for the solar system and most other astrophysi
al

situations. We will next turn to the study of obje
ts whi
h are des
ribed by the S
hwarzs
hild

solution even at radii smaller than 2GM | bla
k holes. (We'll use the term \bla
k hole"

for the moment, even though we haven't introdu
ed a pre
ise meaning for su
h an obje
t.)
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One way of understanding a geometry is to explore its 
ausal stru
ture, as de�ned by the

light 
ones. We therefore 
onsider radial null 
urves, those for whi
h � and � are 
onstant

and ds

2

= 0:

ds

2

= 0 = �

�

1�

2GM

r

�

dt

2

+

�

1 �

2GM

r

�

�1

dr

2

; (7.63)

from whi
h we see that

dt

dr

= �

�

1�

2GM

r

�

�1

: (7.64)

This of 
ourse measures the slope of the light 
ones on a spa
etime diagram of the t-r plane.

For large r the slope is �1, as it would be in 
at spa
e, while as we approa
h r = 2GM we

get dt=dr ! �1, and the light 
ones \
lose up":

r

t

2GM

Thus a light ray whi
h approa
hes r = 2GM never seems to get there, at least in this


oordinate system; instead it seems to asymptote to this radius.

As we will see, this is an illusion, and the light ray (or a massive parti
le) a
tually has no

trouble rea
hing r = 2GM . But an observer far away would never be able to tell. If we stayed

outside while an intrepid observational general relativist dove into the bla
k hole, sending

ba
k signals all the time, we would simply see the signals rea
h us more and more slowly. This

should be 
lear from the pi
tures, and is 
on�rmed by our 
omputation of ��

1

=��

2

when we

dis
ussed the gravitational redshift (7.61). As infalling astronauts approa
h r = 2GM , any

�xed interval ��

1

of their proper time 
orresponds to a longer and longer interval ��

2

from

our point of view. This 
ontinues forever; we would never see the astronaut 
ross r = 2GM ,

we would just see them move more and more slowly (and be
ome redder and redder, almost

as if they were embarrassed to have done something as stupid as diving into a bla
k hole).

The fa
t that we never see the infalling astronauts rea
h r = 2GM is a meaningful

statement, but the fa
t that their traje
tory in the t-r plane never rea
hes there is not. It

is highly dependent on our 
oordinate system, and we would like to ask a more 
oordinate-

independent question (su
h as, do the astronauts rea
h this radius in a �nite amount of their

proper time?). The best way to do this is to 
hange 
oordinates to a system whi
h is better
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r

t

2GM

∆τ

∆τ

∆τ

∆τ   > ∆τ

1

1

2

2
’

2

behaved at r = 2GM . There does exist a set of su
h 
oordinates, whi
h we now set out to

�nd. There is no way to \derive" a 
oordinate transformation, of 
ourse, we just say what

the new 
oordinates are and plug in the formulas. But we will develop these 
oordinates in

several steps, in hopes of making the 
hoi
es seem somewhat motivated.

The problem with our 
urrent 
oordinates is that dt=dr !1 along radial null geodesi
s

whi
h approa
h r = 2GM ; progress in the r dire
tion be
omes slower and slower with respe
t

to the 
oordinate time t. We 
an try to �x this problem by repla
ing t with a 
oordinate

whi
h \moves more slowly" along null geodesi
s. First noti
e that we 
an expli
itly solve

the 
ondition (7.64) 
hara
terizing radial null 
urves to obtain

t = �r

�

+ 
onstant ; (7.65)

where the tortoise 
oordinate r

�

is de�ned by

r

�

= r + 2GM ln

�

r

2GM

� 1

�

: (7.66)

(The tortoise 
oordinate is only sensibly related to r when r � 2GM , but beyond there our


oordinates aren't very good anyway.) In terms of the tortoise 
oordinate the S
hwarzs
hild

metri
 be
omes

ds

2

=

�

1 �

2GM

r

�

�

�dt

2

+ dr

�

2

�

+ r

2

d


2

; (7.67)

where r is thought of as a fun
tion of r

�

. This represents some progress, sin
e the light 
ones

now don't seem to 
lose up; furthermore, none of the metri
 
oeÆ
ients be
omes in�nite at

r = 2GM (although both g

tt

and g

r

�

r

�

be
ome zero). The pri
e we pay, however, is that the

surfa
e of interest at r = 2GM has just been pushed to in�nity.

Our next move is to de�ne 
oordinates whi
h are naturally adapted to the null geodesi
s.

If we let

~u = t+ r

�
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8r* = -

t

r = 2GM

r*

~v = t� r

�

; (7.68)

then infalling radial null geodesi
s are 
hara
terized by ~u = 
onstant, while the outgoing

ones satisfy ~v = 
onstant. Now 
onsider going ba
k to the original radial 
oordinate r,

but repla
ing the timelike 
oordinate t with the new 
oordinate ~u. These are known as

Eddington-Finkelstein 
oordinates. In terms of them the metri
 is

ds

2

= �

�

1�

2GM

r

�

d~u

2

+ (d~udr + drd~u) + r

2

d


2

: (7.69)

Here we see our �rst sign of real progress. Even though the metri
 
oeÆ
ient g

~u~u

vanishes

at r = 2GM , there is no real degenera
y; the determinant of the metri
 is

g = �r

4

sin

2

� ; (7.70)

whi
h is perfe
tly regular at r = 2GM . Therefore the metri
 is invertible, and we see on
e

and for all that r = 2GM is simply a 
oordinate singularity in our original (t; r; �; �) system.

In the Eddington-Finkelstein 
oordinates the 
ondition for radial null 
urves is solved by

d~u

dr

=

(

0 ; (infalling)

2

�

1�

2GM

r

�

�1

: (outgoing)

(7.71)

We 
an therefore see what has happened: in this 
oordinate system the light 
ones remain

well-behaved at r = 2GM , and this surfa
e is at a �nite 
oordinate value. There is no

problem in tra
ing the paths of null or timelike parti
les past the surfa
e. On the other

hand, something interesting is 
ertainly going on. Although the light 
ones don't 
lose up,

they do tilt over, su
h that for r < 2GM all future-dire
ted paths are in the dire
tion of

de
reasing r.

The surfa
e r = 2GM , while being lo
ally perfe
tly regular, globally fun
tions as a point

of no return | on
e a test parti
le dips below it, it 
an never 
ome ba
k. For this reason

r = 2GM is known as the event horizon; no event at r � 2GM 
an in
uen
e any other
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u

r = 2GM

u = 

r = 0

const

~

~

r

event at r > 2GM . Noti
e that the event horizon is a null surfa
e, not a timelike one. Noti
e

also that sin
e nothing 
an es
ape the event horizon, it is impossible for us to \see inside"

| thus the name bla
k hole.

Let's 
onsider what we have done. A
ting under the suspi
ion that our 
oordinates may

not have been good for the entire manifold, we have 
hanged from our original 
oordinate t

to the new one ~u, whi
h has the ni
e property that if we de
rease r along a radial 
urve null


urve ~u = 
onstant, we go right through the event horizon without any problems. (Indeed, a

lo
al observer a
tually making the trip would not ne
essarily know when the event horizon

had been 
rossed | the lo
al geometry is no di�erent than anywhere else.) We therefore


on
lude that our suspi
ion was 
orre
t and our initial 
oordinate system didn't do a good

job of 
overing the entire manifold. The region r � 2GM should 
ertainly be in
luded in

our spa
etime, sin
e physi
al parti
les 
an easily rea
h there and pass through. However,

there is no guarantee that we are �nished; perhaps there are other dire
tions in whi
h we


an extend our manifold.

In fa
t there are. Noti
e that in the (~u; r) 
oordinate system we 
an 
ross the event

horizon on future-dire
ted paths, but not on past-dire
ted ones. This seems unreasonable,

sin
e we started with a time-independent solution. But we 
ould have 
hosen ~v instead of

~u, in whi
h 
ase the metri
 would have been

ds

2

= �

�

1�

2GM

r

�

d~v

2

� (d~vdr + drd~v) + r

2

d


2

: (7.72)

Now we 
an on
e again pass through the event horizon, but this time only along past-dire
ted


urves.

This is perhaps a surprise: we 
an 
onsistently follow either future-dire
ted or past-

dire
ted 
urves through r = 2GM , but we arrive at di�erent pla
es. It was a
tually to be

expe
ted, sin
e from the de�nitions (7.68), if we keep ~u 
onstant and de
rease r we must

have t ! +1, while if we keep ~v 
onstant and de
rease r we must have t ! �1. (The

tortoise 
oordinate r

�

goes to �1 as r ! 2GM .) So we have extended spa
etime in two

di�erent dire
tions, one to the future and one to the past.
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r = 2GMr = 0

const

~

~

r

v

v = 

The next step would be to follow spa
elike geodesi
s to see if we would un
over still more

regions. The answer is yes, we would rea
h yet another pie
e of the spa
etime, but let's

short
ut the pro
ess by de�ning 
oordinates that are good all over. A �rst guess might be

to use both ~u and ~v at on
e (in pla
e of t and r), whi
h leads to

ds

2

=

1

2

�

1�

2GM

r

�

(d~ud~v + d~vd~u) + r

2

d


2

; (7.73)

with r de�ned impli
itly in terms of ~u and ~v by

1

2

(~u� ~v) = r + 2GM ln

�

r

2GM

� 1

�

: (7.74)

We have a
tually re-introdu
ed the degenera
y with whi
h we started out; in these 
oordi-

nates r = 2GM is \in�nitely far away" (at either ~u = �1 or ~v = +1). The thing to do is

to 
hange to 
oordinates whi
h pull these points into �nite 
oordinate values; a good 
hoi
e

is

u

0

= e

~u=4GM

v

0

= e

�~v=4GM

; (7.75)

whi
h in terms of our original (t; r) system is

u

0

=

�

r

2GM

� 1

�

1=2

e

(r+t)=4GM

v

0

=

�

r

2GM

� 1

�

1=2

e

(r�t)=4GM

: (7.76)

In the (u

0

; v

0

; �; �) system the S
hwarzs
hild metri
 is

ds

2

= �

16G

3

M

3

r

e

�r=2GM

(du

0

dv

0

+ dv

0

du

0

) + r

2

d


2

: (7.77)

Finally the nonsingular nature of r = 2GM be
omes 
ompletely manifest; in this form none

of the metri
 
oeÆ
ients behave in any spe
ial way at the event horizon.



7 THE SCHWARZSCHILD SOLUTION AND BLACK HOLES 187

Both u

0

and v

0

are null 
oordinates, in the sense that their partial derivatives �=�u

0

and

�=�v

0

are null ve
tors. There is nothing wrong with this, sin
e the 
olle
tion of four partial

derivative ve
tors (two null and two spa
elike) in this system serve as a perfe
tly good basis

for the tangent spa
e. Nevertheless, we are somewhat more 
omfortable working in a system

where one 
oordinate is timelike and the rest are spa
elike. We therefore de�ne

u =

1

2

(u

0

� v

0

)

=

�

r

2GM

� 1

�

1=2

e

r=4GM


osh(t=4GM) (7.78)

and

v =

1

2

(u

0

+ v

0

)

=

�

r

2GM

� 1

�

1=2

e

r=4GM

sinh(t=4GM) ; (7.79)

in terms of whi
h the metri
 be
omes

ds

2

=

32G

3

M

3

r

e

�r=2GM

(�dv

2

+ du

2

) + r

2

d


2

; (7.80)

where r is de�ned impli
itly from

(u

2

� v

2

) =

�

r

2GM

� 1

�

e

r=2GM

: (7.81)

The 
oordinates (v; u; �; �) are known as Kruskal 
oordinates, or sometimes Kruskal-

Szekres 
oordinates. Note that v is the timelike 
oordinate.

The Kruskal 
oordinates have a number of mira
ulous properties. Like the (t; r

�

) 
oor-

dinates, the radial null 
urves look like they do in 
at spa
e:

v = �u+ 
onstant : (7.82)

Unlike the (t; r

�

) 
oordinates, however, the event horizon r = 2GM is not in�nitely far away;

in fa
t it is de�ned by

v = �u ; (7.83)


onsistent with it being a null surfa
e. More generally, we 
an 
onsider the surfa
es r = 
on-

stant. From (7.81) these satisfy

u

2

� v

2

= 
onstant : (7.84)

Thus, they appear as hyperbolae in the u-v plane. Furthermore, the surfa
es of 
onstant t

are given by

v

u

= tanh(t=4GM) ; (7.85)
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whi
h de�nes straight lines through the origin with slope tanh(t=4GM). Note that as t !

�1 this be
omes the same as (7.83); therefore these surfa
es are the same as r = 2GM .

Now, our 
oordinates (v; u) should be allowed to range over every value they 
an take

without hitting the real singularity at r = 2GM ; the allowed region is therefore �1 �

u � 1 and v

2

< u

2

+ 1. We 
an now draw a spa
etime diagram in the v-u plane (with

� and � suppressed), known as a \Kruskal diagram", whi
h represents the entire spa
etime


orresponding to the S
hwarzs
hild metri
.

88
8 8

u

v

r = 0

r = 0

constr = 
t = const

r = 2GM

r = 2GM r = 2GM

r = 2GM

t = - t = +

t = -t = +

Ea
h point on the diagram is a two-sphere.
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Our original 
oordinates (t; r) were only good for r > 2GM , whi
h is only a part of the

manifold portrayed on the Kruskal diagram. It is 
onvenient to divide the diagram into four

regions:

II

IV

III

I

The region in whi
h we started was region I; by following future-dire
ted null rays we rea
hed

region II, and by following past-dire
ted null rays we rea
hed region III. If we had explored

spa
elike geodesi
s, we would have been led to region IV. The de�nitions (7.78) and (7.79)

whi
h relate (u; v) to (t; r) are really only good in region I; in the other regions it is ne
essary

to introdu
e appropriate minus signs to prevent the 
oordinates from be
oming imaginary.

Having extended the S
hwarzs
hild geometry as far as it will go, we have des
ribed a

remarkable spa
etime. Region II, of 
ourse, is what we think of as the bla
k hole. On
e

anything travels from region I into II, it 
an never return. In fa
t, every future-dire
ted path

in region II ends up hitting the singularity at r = 0; on
e you enter the event horizon, you are

utterly doomed. This is worth stressing; not only 
an you not es
ape ba
k to region I, you


annot even stop yourself from moving in the dire
tion of de
reasing r, sin
e this is simply

the timelike dire
tion. (This 
ould have been seen in our original 
oordinate system; for

r < 2GM , t be
omes spa
elike and r be
omes timelike.) Thus you 
an no more stop moving

toward the singularity than you 
an stop getting older. Sin
e proper time is maximized along

a geodesi
, you will live the longest if you don't struggle, but just relax as you approa
h

the singularity. Not that you will have long to relax. (Nor that the voyage will be very

relaxing; as you approa
h the singularity the tidal for
es be
ome in�nite. As you fall toward

the singularity your feet and head will be pulled apart from ea
h other, while your torso

is squeezed to in�nitesimal thinness. The grisly demise of an astrophysi
ist falling into a

bla
k hole is detailed in Misner, Thorne, and Wheeler, se
tion 32.6. Note that they use

orthonormal frames [not that it makes the trip any more enjoyable℄.)

Regions III and IV might be somewhat unexpe
ted. Region III is simply the time-reverse

of region II, a part of spa
etime from whi
h things 
an es
ape to us, while we 
an never get

there. It 
an be thought of as a \white hole." There is a singularity in the past, out of whi
h

the universe appears to spring. The boundary of region III is sometimes 
alled the past
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event horizon, while the boundary of region II is 
alled the future event horizon. Region IV,

meanwhile, 
annot be rea
hed from our region I either forward or ba
kward in time (nor 
an

anybody from over there rea
h us). It is another asymptoti
ally 
at region of spa
etime, a

mirror image of ours. It 
an be thought of as being 
onne
ted to region I by a \wormhole," a

ne
k-like 
on�guration joining two distin
t regions. Consider sli
ing up the Kruskal diagram

into spa
elike surfa
es of 
onstant v:

A

B

C

D

E

Now we 
an draw pi
tures of ea
h sli
e, restoring one of the angular 
oordinates for 
larity:

A B C D E

r = 2GM

v

So the S
hwarzs
hild geometry really des
ribes two asymptoti
ally 
at regions whi
h rea
h

toward ea
h other, join together via a wormhole for a while, and then dis
onne
t. But the

wormhole 
loses up too qui
kly for any timelike observer to 
ross it from one region into the

next.

It might seem somewhat implausible, this story about two separate spa
etimes rea
hing

toward ea
h other for a while and then letting go. In fa
t, it is not expe
ted to happen in

the real world, sin
e the S
hwarzs
hild metri
 does not a

urately model the entire universe.
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Remember that it is only valid in va
uum, for example outside a star. If the star has a radius

larger than 2GM , we need never worry about any event horizons at all. But we believe that

there are stars whi
h 
ollapse under their own gravitational pull, shrinking down to below

r = 2GM and further into a singularity, resulting in a bla
k hole. There is no need for a

white hole, however, be
ause the past of su
h a spa
etime looks nothing like that of the full

S
hwarzs
hild solution. Roughly, a Kruskal-like diagram for stellar 
ollapse would look like

the following:

r = 2GM
r = 0

vacuum
(Schwarzschild)

interior
of star

The shaded region is not des
ribed by S
hwarzs
hild, so there is no need to fret about white

holes and wormholes.

While we are on the subje
t, we 
an say something about the formation of astrophysi
al

bla
k holes from massive stars. The life of a star is a 
onstant struggle between the inward

pull of gravity and the outward push of pressure. When the star is burning nu
lear fuel

at its 
ore, the pressure 
omes from the heat produ
ed by this burning. (We should put

\burning" in quotes, sin
e nu
lear fusion is unrelated to oxidation.) When the fuel is used

up, the temperature de
lines and the star begins to shrink as gravity starts winning the

struggle. Eventually this pro
ess is stopped when the ele
trons are pushed so 
lose together

that they resist further 
ompression simply on the basis of the Pauli ex
lusion prin
iple (no

two fermions 
an be in the same state). The resulting obje
t is 
alled a white dwarf. If the

mass is suÆ
iently high, however, even the ele
tron degenera
y pressure is not enough, and

the ele
trons will 
ombine with the protons in a dramati
 phase transition. The result is a

neutron star, whi
h 
onsists of almost entirely neutrons (although the insides of neutron

stars are not understood terribly well). Sin
e the 
onditions at the 
enter of a neutron

star are very di�erent from those on earth, we do not have a perfe
t understanding of the

equation of state. Nevertheless, we believe that a suÆ
iently massive neutron star will itself
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be unable to resist the pull of gravity, and will 
ontinue to 
ollapse. Sin
e a 
uid of neutrons

is the densest material of whi
h we 
an presently 
on
eive, it is believed that the inevitable

out
ome of su
h a 
ollapse is a bla
k hole.

The pro
ess is summarized in the following diagram of radius vs. mass:

0.5

1.0

1.5

log   R

white
  dwarfs

neutron
  stars

1 2 3 4

D

B

C
A

10

M/M

(km)

The point of the diagram is that, for any given mass M , the star will de
rease in radius

until it hits the line. White dwarfs are found between points A and B, and neutron stars

between points C and D. Point B is at a height of somewhat less than 1.4 solar masses; the

height of D is less 
ertain, but probably less than 2 solar masses. The pro
ess of 
ollapse

is 
ompli
ated, and during the evolution the star 
an lose or gain mass, so the endpoint of

any given star is hard to predi
t. Nevertheless white dwarfs are all over the pla
e, neutron

stars are not un
ommon, and there are a number of systems whi
h are strongly believed to


ontain bla
k holes. (Of 
ourse, you 
an't dire
tly see the bla
k hole. What you 
an see is

radiation from matter a

reting onto the hole, whi
h heats up as it gets 
loser and emits

radiation.)

We have seen that the Kruskal 
oordinate system provides a very useful representation

of the S
hwarzs
hild geometry. Before moving on to other types of bla
k holes, we will

introdu
e one more way of thinking about this spa
etime, the Penrose (or Carter-Penrose,

or 
onformal) diagram. The idea is to do a 
onformal transformation whi
h brings the entire

manifold onto a 
ompa
t region su
h that we 
an �t the spa
etime on a pie
e of paper.

Let's begin with Minkowski spa
e, to see how the te
hnique works. The metri
 in polar


oordinates is

ds

2

= �dt

2

+ dr

2

+ r

2

d


2

: (7.86)

Nothing unusual will happen to the �; � 
oordinates, but we will want to keep 
areful tra
k



7 THE SCHWARZSCHILD SOLUTION AND BLACK HOLES 193

of the ranges of the other two 
oordinates. In this 
ase of 
ourse we have

�1 < t < +1

0 � r < +1 : (7.87)

Te
hni
ally the worldline r = 0 represents a 
oordinate singularity and should be 
overed by

a di�erent pat
h, but we all know what is going on so we'll just a
t like r = 0 is well-behaved.

Our task is made somewhat easier if we swit
h to null 
oordinates:

u =

1

2

(t+ r)

v =

1

2

(t� r) ; (7.88)

with 
orresponding ranges given by

�1 < u < +1

�1 < v < +1

v � u : (7.89)

These ranges are as portrayed in the �gure, on whi
h ea
h point represents a 2-sphere of

t

v = const

u = const

r

radius r = u� v. The metri
 in these 
oordinates is given by

ds

2

= �2(dudv + dvdu) + (u� v)

2

d


2

: (7.90)

We now want to 
hange to 
oordinates in whi
h \in�nity" takes on a �nite 
oordinate

value. A good 
hoi
e is

U = ar
tanu
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U = arctan u

u

/2

π

π

-   /2

V = ar
tan v : (7.91)

The ranges are now

��=2 < U < +�=2

��=2 < V < +�=2

V � U : (7.92)

To get the metri
, use

dU =

du

1 + u

2

; (7.93)

and


os(ar
tan u) =

1

p

1 + u

2

; (7.94)

and likewise for v. We are led to

dudv + dvdu =

1


os

2

U 
os

2

V

(dUdV + dV dU) : (7.95)

Meanwhile,

(u� v)

2

= (tanU � tan V )

2

=

1


os

2

U 
os

2

V

(sinU 
os V � 
osU sin V )

2

=

1


os

2

U 
os

2

V

sin

2

(U � V ) : (7.96)

Therefore, the Minkowski metri
 in these 
oordinates is

ds

2

=

1


os

2

U 
os

2

V

h

�2(dUdV + dV dU) + sin

2

(U � V )d


2

i

: (7.97)

This has a 
ertain appeal, sin
e the metri
 appears as a fairly simple expression multi-

plied by an overall fa
tor. We 
an make it even better by transforming ba
k to a timelike


oordinate � and a spa
elike (radial) 
oordinate �, via

� = U + V
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� = U � V ; (7.98)

with ranges

�� < � < +�

0 � � < +� : (7.99)

Now the metri
 is

ds

2

= !

�2

�

�d�

2

+ d�

2

+ sin

2

� d


2

�

; (7.100)

where

! = 
osU 
os V

=

1

2

(
os � + 
os�) : (7.101)

The Minkowski metri
 may therefore be thought of as related by a 
onformal transfor-

mation to the \unphysi
al" metri


d�s

2

= !

2

ds

2

= �d�

2

+ d�

2

+ sin

2

� d


2

: (7.102)

This des
ribes the manifold R� S

3

, where the 3-sphere is maximally symmetri
 and stati
.

There is 
urvature in this metri
, and it is not a solution to the va
uum Einstein's equations.

This shouldn't bother us, sin
e it is unphysi
al; the true physi
al metri
, obtained by a


onformal transformation, is simply 
at spa
etime. In fa
t this metri
 is that of the \Einstein

stati
 universe," a stati
 (but unstable) solution to Einstein's equations with a perfe
t 
uid

and a 
osmologi
al 
onstant. Of 
ourse, the full range of 
oordinates on R � S

3

would

usually be �1 < � < +1, 0 � � � �, while Minkowski spa
e is mapped into the subspa
e

de�ned by (7.99). The entire R � S

3


an be drawn as a 
ylinder, in whi
h ea
h 
ir
le is a

three-sphere, as shown on the next page.
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η

η = −π

η = π

χ = 0

χ = π

The shaded region represents Minkowski spa
e. Note that ea
h point (�; �) on this 
ylinder

is half of a two-sphere, where the other half is the point (�;��). We 
an unroll the shaded

region to portray Minkowski spa
e as a triangle, as shown in the �gure. The is the Penrose

η,

χ,

χ=0

i

I

i

I

constt =

constr =

i -

+

+

0

-

r

t

diagram. Ea
h point represents a two-sphere.

In fa
t Minkowski spa
e is only the interior of the above diagram (in
luding � = 0); the

boundaries are not part of the original spa
etime. Together they are referred to as 
onformal

in�nity. The stru
ture of the Penrose diagram allows us to subdivide 
onformal in�nity
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into a few di�erent regions:

i

+

= future timelike in�nity (� = � ; � = 0)

i

0

= spatial in�nity (� = 0 ; � = �)

i

�

= past timelike in�nity (� = �� ; � = 0)

I

+

= future null in�nity (� = � � � ; 0 < � < �)

I

�

= past null in�nity (� = �� + � ; 0 < � < �)

(I

+

and I

�

are pronoun
ed as \s
ri-plus" and \s
ri-minus", respe
tively.) Note that i

+

,

i

0

, and i

�

are a
tually points, sin
e � = 0 and � = � are the north and south poles of S

3

.

Meanwhile I

+

and I

�

are a
tually null surfa
es, with the topology of R� S

2

.

There are a number of important features of the Penrose diagram for Minkowski spa
e-

time. The points i

+

, and i

�


an be thought of as the limits of spa
elike surfa
es whose

normals are timelike; 
onversely, i

0


an be thought of as the limit of timelike surfa
es whose

normals are spa
elike. Radial null geodesi
s are at �45

Æ

in the diagram. All timelike

geodesi
s begin at i

�

and end at i

+

; all null geodesi
s begin at I

�

and end at I

+

; all spa
e-

like geodesi
s both begin and end at i

0

. On the other hand, there 
an be non-geodesi


timelike 
urves that end at null in�nity (if they be
ome \asymptoti
ally null").

It is ni
e to be able to �t all of Minkowski spa
e on a small pie
e of paper, but we don't

really learn mu
h that we didn't already know. Penrose diagrams are more useful when

we want to represent slightly more interesting spa
etimes, su
h as those for bla
k holes.

The original use of Penrose diagrams was to 
ompare spa
etimes to Minkowski spa
e \at

in�nity" | the rigorous de�nition of \asymptoti
ally 
at" is basi
ally that a spa
etime has

a 
onformal in�nity just like Minkowski spa
e. We will not pursue these issues in detail, but

instead turn dire
tly to analysis of the Penrose diagram for a S
hwarzs
hild bla
k hole.

We will not go through the ne
essary manipulations in detail, sin
e they parallel the

Minkowski 
ase with 
onsiderable additional algebrai
 
omplexity. We would start with the

null version of the Kruskal 
oordinates, in whi
h the metri
 takes the form

ds

2

= �

16G

3

M

3

r

e

�r=2GM

(du

0

dv

0

+ dv

0

du

0

) + r

2

d


2

; (7.103)

where r is de�ned impli
itly via

u

0

v

0

=

�

r

2GM

� 1

�

e

r=2GM

: (7.104)

Then essentially the same transformation as was used in 
at spa
etime suÆ
es to bring

in�nity into �nite 
oordinate values:

u

00

= ar
tan

 

u

0

p

2GM

!
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v

00

= ar
tan

 

v

0

p

2GM

!

; (7.105)

with ranges

��=2 < u

00

< +�=2

��=2 < v

00

< +�=2

�� < u

00

+ v

00

< � :

The (u

00

; v

00

) part of the metri
 (that is, at 
onstant angular 
oordinates) is now 
onformally

related to Minkowski spa
e. In the new 
oordinates the singularities at r = 0 are straight

lines that stret
h from timelike in�nity in one asymptoti
 region to timelike in�nity in the

other. The Penrose diagram for the maximally extended S
hwarzs
hild solution thus looks

like this:

I -

I
+

i+i +

I
+

I -

i 0

i - i -

i 0

r = const

t = const

r =
 2

G
M

r = 2G
M

r = 0

r = 0

The only real subtlety about this diagram is the ne
essity to understand that i

+

and i

�

are

distin
t from r = 0 (there are plenty of timelike paths that do not hit the singularity). Noti
e

also that the stru
ture of 
onformal in�nity is just like that of Minkowski spa
e, 
onsistent

with the 
laim that S
hwarzs
hild is asymptoti
ally 
at. Also, the Penrose diagram for a


ollapsing star that forms a bla
k hole is what you might expe
t, as shown on the next page.

On
e again the Penrose diagrams for these spa
etimes don't really tell us anything we

didn't already know; their usefulness will be
ome evident when we 
onsider more general

bla
k holes. In prin
iple there 
ould be a wide variety of types of bla
k holes, depending on

the pro
ess by whi
h they were formed. Surprisingly, however, this turns out not to be the


ase; no matter how a bla
k hole is formed, it settles down (fairly qui
kly) into a state whi
h

is 
hara
terized only by the mass, 
harge, and angular momentum. This property, whi
h

must be demonstrated individually for the various types of �elds whi
h one might imagine

go into the 
onstru
tion of the hole, is often stated as \bla
k holes have no hair." You
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i 0

i+

I
+

r = 0

2G
M

r = 0

-i


an demonstrate, for example, that a hole whi
h is formed from an initially inhomogeneous


ollapse \shakes o�" any lumpiness by emitting gravitational radiation. This is an example

of a \no-hair theorem." If we are interested in the form of the bla
k hole after it has settled

down, we thus need only to 
on
ern ourselves with 
harged and rotating holes. In both 
ases

there exist exa
t solutions for the metri
, whi
h we 
an examine 
losely.

But �rst let's take a brief detour to the world of bla
k hole evaporation. It is strange to

think of a bla
k hole \evaporating," but in the real world bla
k holes aren't truly bla
k |

they radiate energy as if they were a bla
kbody of temperature T = �h=8�kGM , whereM is

the mass of the hole and k is Boltzmann's 
onstant. The derivation of this e�e
t, known as

Hawking radiation, involves the use of quantum �eld theory in 
urved spa
etime and is way

outside our s
ope right now. The informal idea is nevertheless understandable. In quantum

�eld theory there are \va
uum 
u
tuations" | the spontaneous 
reation and annihilation

of parti
le/antiparti
le pairs in empty spa
e. These 
u
tuations are pre
isely analogous to

the zero-point 
u
tuations of a simple harmoni
 os
illator. Normally su
h 
u
tuations are

e

r = 2GM

r

t

+e e-

e-

+
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impossible to dete
t, sin
e they average out to give zero total energy (although nobody knows

why; that's the 
osmologi
al 
onstant problem). In the presen
e of an event horizon, though,

o

asionally one member of a virtual pair will fall into the bla
k hole while its partner es
apes

to in�nity. The parti
le that rea
hes in�nity will have to have a positive energy, but the

total energy is 
onserved; therefore the bla
k hole has to lose mass. (If you like you 
an

think of the parti
le that falls in as having a negative mass.) We see the es
aping parti
les

as Hawking radiation. It's not a very big e�e
t, and the temperature goes down as the mass

goes up, so for bla
k holes of mass 
omparable to the sun it is 
ompletely negligible. Still,

in prin
iple the bla
k hole 
ould lose all of its mass to Hawking radiation, and shrink to

nothing in the pro
ess. The relevant Penrose diagram might look like this:

i+

i 0

I
+

i -

I
-

r = 0

r = 0

r = 0

radiation

On the other hand, it might not. The problem with this diagram is that \information

is lost" | if we draw a spa
elike surfa
e to the past of the singularity and evolve it into

the future, part of it ends up 
rashing into the singularity and being destroyed. As a result

the radiation itself 
ontains less information than the information that was originally in the

spa
etime. (This is the worse than a la
k of hair on the bla
k hole. It's one thing to think

that information has been trapped inside the event horizon, but it is more worrisome to think

that it has disappeared entirely.) But su
h a pro
ess violates the 
onservation of information

that is impli
it in both general relativity and quantum �eld theory, the two theories that led

to the predi
tion. This paradox is 
onsidered a big deal these days, and there are a number

of e�orts to understand how the information 
an somehow be retrieved. A 
urrently popular

explanation relies on string theory, and basi
ally says that bla
k holes have a lot of hair,

in the form of virtual stringy states living near the event horizon. I hope you will not be

disappointed to hear that we won't look at this very 
losely; but you should know what the

problem is and that it is an area of a
tive resear
h these days.
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With that out of our system, we now turn to ele
tri
ally 
harged bla
k holes. These

seem at �rst like reasonable enough obje
ts, sin
e there is 
ertainly nothing to stop us

from throwing some net 
harge into a previously un
harged bla
k hole. In an astrophysi
al

situation, however, the total amount of 
harge is expe
ted to be very small, espe
ially when


ompared with the mass (in terms of the relative gravitational e�e
ts). Nevertheless, 
harged

bla
k holes provide a useful testing ground for various thought experiments, so they are worth

our 
onsideration.

In this 
ase the full spheri
al symmetry of the problem is still present; we know therefore

that we 
an write the metri
 as

ds

2

= �e

2�(r;t)

dt

2

+ e

2�(r;t)

dr

2

+ r

2

d


2

: (7.106)

Now, however, we are no longer in va
uum, sin
e the hole will have a nonzero ele
tromagneti


�eld, whi
h in turn a
ts as a sour
e of energy-momentum. The energy-momentum tensor

for ele
tromagnetism is given by

T

��

=

1

4�

(F

��

F

�

�

�

1

4

g

��

F

��

F

��

) ; (7.107)

where F

��

is the ele
tromagneti
 �eld strength tensor. Sin
e we have spheri
al symmetry,

the most general �eld strength tensor will have 
omponents

F

tr

= f(r; t) = �F

rt

F

��

= g(r; t) sin � = �F

��

; (7.108)

where f(r; t) and g(r; t) are some fun
tions to be determined by the �eld equations, and


omponents not written are zero. F

tr


orresponds to a radial ele
tri
 �eld, while F

��


orre-

sponds to a radial magneti
 �eld. (For those of you wondering about the sin �, re
all that

the thing whi
h should be independent of � and � is the radial 
omponent of the magneti


�eld, B

r

= �

01��

F

��

. For a spheri
ally symmetri
 metri
, �

����

=

1

p

�g

~�

����

is proportional

to (sin �)

�1

, so we want a fa
tor of sin � in F

��

.) The �eld equations in this 
ase are both

Einstein's equations and Maxwell's equations:

g

��

r

�

F

��

= 0

r

[�

F

��℄

= 0 : (7.109)

The two sets are 
oupled together, sin
e the ele
tromagneti
 �eld strength tensor enters

Einstein's equations through the energy-momentum tensor, while the metri
 enters expli
itly

into Maxwell's equations.

The diÆ
ulties are not insurmountable, however, and a pro
edure similar to the one we

followed for the va
uum 
ase leads to a solution for the 
harged 
ase as well. We will not
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go through the steps expli
itly, but merely quote the �nal answer. The solution is known as

the Reissner-Nordstr�m metri
, and is given by

ds

2

= ��dt

2

+�

�1

dr

2

+ r

2

d


2

; (7.110)

where

� = 1 �

2GM

r

+

G(p

2

+ q

2

)

r

2

: (7.111)

In this expression, M is on
e again interpreted as the mass of the hole; q is the total ele
tri



harge, and p is the total magneti
 
harge. Isolated magneti
 
harges (monopoles) have never

been observed in nature, but that doesn't stop us from writing down the metri
 that they

would produ
e if they did exist. There are good theoreti
al reasons to think that monopoles

exist, but are extremely rare. (Of 
ourse, there is also the possibility that a bla
k hole


ould have magneti
 
harge even if there aren't any monopoles.) In fa
t the ele
tri
 and

magneti
 
harges enter the metri
 in the same way, so we are not introdu
ing any additional


ompli
ations by keeping p in our expressions. The ele
tromagneti
 �elds asso
iated with

this solution are given by

F

tr

= �

q

r

2

F

��

= p sin � : (7.112)

Conservatives are wel
ome to set p = 0 if they like.

The stru
ture of singularities and event horizons is more 
ompli
ated in this metri
 than

it was in S
hwarzs
hild, due to the extra term in the fun
tion �(r) (whi
h 
an be thought of

as measuring \how mu
h the light 
ones tip over"). One thing remains the same: at r = 0

there is a true 
urvature singularity (as 
ould be 
he
ked by 
omputing the 
urvature s
alar

R

����

R

����

). Meanwhile, the equivalent of r = 2GM will be the radius where � vanishes.

This will o

ur at

r

�

= GM �

q

G

2

M

2

�G(p

2

+ q

2

) : (7.113)

This might 
onstitute two, one, or zero solutions, depending on the relative values of GM

2

and p

2

+ q

2

. We therefore 
onsider ea
h 
ase separately.

Case One | GM

2

< p

2

+ q

2

In this 
ase the 
oeÆ
ient � is always positive (never zero), and the metri
 is 
ompletely

regular in the (t; r; �; �) 
oordinates all the way down to r = 0. The 
oordinate t is always

timelike, and r is always spa
elike. But there still is the singularity at r = 0, whi
h is now a

timelike line. Sin
e there is no event horizon, there is no obstru
tion to an observer travelling

to the singularity and returning to report on what was observed. This is known as a naked

singularity, one whi
h is not shielded by an horizon. A 
areful analysis of the geodesi
s
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GM   > p   + q2 2 2

(r)

r- GM r+ 2GM

p = q = 0

(Schwarzschild)

(2)

(1)

(3) 2 2 2

2 2 2GM   < p   + q

GM   = p   + q

r

∆

reveals, however, that the singularity is \repulsive" | timelike geodesi
s never interse
t

r = 0, instead they approa
h and then reverse 
ourse and move away. (Null geodesi
s 
an

rea
h the singularity, as 
an non-geodesi
 timelike 
urves.)

As r ! 1 the solution approa
hes 
at spa
etime, and as we have just seen the 
ausal

stru
ture is \normal" everywhere. The Penrose diagram will therefore be just like that of

Minkowski spa
e, ex
ept that now r = 0 is a singularity.

i

I

i

I

i -

+

+

0

-

(singularity)

r = 0

The nakedness of the singularity o�ends our sense of de
en
y, as well as the 
osmi
 
en-

sorship 
onje
ture, whi
h roughly states that the gravitational 
ollapse of physi
al matter


on�gurations will never produ
e a naked singularity. (Of 
ourse, it's just a 
onje
ture, and it

may not be right; there are some 
laims from numeri
al simulations that 
ollapse of spindle-

like 
on�gurations 
an lead to naked singularities.) In fa
t, we should not ever expe
t to �nd
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a bla
k hole with GM

2

< p

2

+ q

2

as the result of gravitational 
ollapse. Roughly speaking,

this 
ondition states that the total energy of the hole is less than the 
ontribution to the

energy from the ele
tromagneti
 �elds alone | that is, the mass of the matter whi
h 
arried

the 
harge would have had to be negative. This solution is therefore generally 
onsidered

to be unphysi
al. Noti
e also that there are not good Cau
hy surfa
es (spa
elike sli
es for

whi
h every inextendible timelike line interse
ts them) in this spa
etime, sin
e timelike lines


an begin and end at the singularity.

Case Two | GM

2

> p

2

+ q

2

This is the situation whi
h we expe
t to apply in real gravitational 
ollapse; the energy

in the ele
tromagneti
 �eld is less than the total energy. In this 
ase the metri
 
oeÆ
ient

�(r) is positive at large r and small r, and negative inside the two vanishing points r

�

=

GM �

q

G

2

M

2

�G(p

2

+ q

2

). The metri
 has 
oordinate singularities at both r

+

and r

�

; in

both 
ases these 
ould be removed by a 
hange of 
oordinates as we did with S
hwarzs
hild.

The surfa
es de�ned by r = r

�

are both null, and in fa
t they are event horizons (in a

sense we will make pre
ise in a moment). The singularity at r = 0 is a timelike line (not

a spa
elike surfa
e as in S
hwarzs
hild). If you are an observer falling into the bla
k hole

from far away, r

+

is just like 2GM in the S
hwarzs
hild metri
; at this radius r swit
hes

from being a spa
elike 
oordinate to a timelike 
oordinate, and you ne
essarily move in the

dire
tion of de
reasing r. Witnesses outside the bla
k hole also see the same phenomena

that they would outside an un
harged hole | the infalling observer is seen to move more

and more slowly, and is in
reasingly redshifted.

But the inevitable fall from r

+

to ever-de
reasing radii only lasts until you rea
h the null

surfa
e r = r

�

, where r swit
hes ba
k to being a spa
elike 
oordinate and the motion in the

dire
tion of de
reasing r 
an be arrested. Therefore you do not have to hit the singularity

at r = 0; this is to be expe
ted, sin
e r = 0 is a timelike line (and therefore not ne
essarily

in your future). In fa
t you 
an 
hoose either to 
ontinue on to r = 0, or begin to move

in the dire
tion of in
reasing r ba
k through the null surfa
e at r = r

�

. Then r will on
e

again be a timelike 
oordinate, but with reversed orientation; you are for
ed to move in the

dire
tion of in
reasing r. You will eventually be spit out past r = r

+

on
e more, whi
h is

like emerging from a white hole into the rest of the universe. From here you 
an 
hoose to

go ba
k into the bla
k hole | this time, a di�erent hole than the one you entered in the

�rst pla
e | and repeat the voyage as many times as you like. This little story 
orresponds

to the a

ompanying Penrose diagram, whi
h of 
ourse 
an be derived more rigorously by


hoosing appropriate 
oordinates and analyti
ally extending the Reissner-Nordstr�m metri


as far as it will go.

How mu
h of this is s
ien
e, as opposed to s
ien
e �
tion? Probably not mu
h. If you

think about the world as seen from an observer inside the bla
k hole who is about to 
ross the

event horizon at r

�

, you will noti
e that they 
an look ba
k in time to see the entire history
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+r

r-

r-r-

+r

i 0

i 0
i 0

i 0

I -

I -I -

I
+

i - i -

i -
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i +

+r
+r

+r +r

r-r-

+r +r

I
+

I
+

I -

I
+

i+

i -

r-
r =
surfaces

Reissner-Nordstrom:

GM   > p   + q2 2 2

const

timelike

r = 0r = 0

r = 0

r = 0
trajectories
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of the external (asymptoti
ally 
at) universe, at least as seen from the bla
k hole. But they

see this (in�nitely long) history in a �nite amount of their proper time | thus, any signal

that gets to them as they approa
h r

�

is in�nitely blueshifted. Therefore it is reasonable

to believe (although I know of no proof) that any non-spheri
ally symmetri
 perturbation

that 
omes into a Reissner-Nordstr�m bla
k hole will violently disturb the geometry we have

des
ribed. It's hard to say what the a
tual geometry will look like, but there is no very

good reason to believe that it must 
ontain an in�nite number of asymptoti
ally 
at regions


onne
ting to ea
h other via various wormholes.

Case Three | GM

2

= p

2

+ q

2

This 
ase is known as the extreme Reissner-Nordstr�m solution (or simply \extremal

bla
k hole"). The mass is exa
tly balan
ed in some sense by the 
harge | you 
an 
onstru
t

exa
t solutions 
onsisting of several extremal bla
k holes whi
h remain stationary with re-

spe
t to ea
h other for all time. On the one hand the extremal hole is an amusing theoreti
al

toy; these solutions are often examined in studies of the information loss paradox, and the

role of bla
k holes in quantum gravity. On the other hand it appears very unstable, sin
e

adding just a little bit of matter will bring it to Case Two.

i 0

i 0

i 0

I
+

I
+

I -

I -r =
 

8

r = 
8

r = 0

r =
 G

M

r = G
M

The extremal bla
k holes have �(r) = 0 at a single radius, r = GM . This does represent

an event horizon, but the r 
oordinate is never timelike; it be
omes null at r = GM , but is

spa
elike on either side. The singularity at r = 0 is a timelike line, as in the other 
ases. So
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for this bla
k hole you 
an again avoid the singularity and 
ontinue to move to the future

to extra 
opies of the asymptoti
ally 
at region, but the singularity is always \to the left."

The Penrose diagram is as shown.

We 
ould of 
ourse go into a good deal more detail about the 
harged solutions, but let's

instead move on to spinning bla
k holes. It is mu
h more diÆ
ult to �nd the exa
t solution

for the metri
 in this 
ase, sin
e we have given up on spheri
al symmetry. To begin with

all that is present is axial symmetry (around the axis of rotation), but we 
an also ask for

stationary solutions (a timelike Killing ve
tor). Although the S
hwarzs
hild and Reissner-

Nordstr�m solutions were dis
overed soon after general relativity was invented, the solution

for a rotating bla
k hole was found by Kerr only in 1963. His result, the Kerr metri
, is

given by the following mess:

ds

2

= �dt

2

+

�

2

�

dr

2

+ �

2

d�

2

+ (r

2

+ a

2

) sin

2

� d�

2

+

2GMr

�

2

(a sin

2

� d�� dt)

2

; (7.114)

where

�(r) = r

2

� 2GMr + a

2

; (7.115)

and

�

2

(r; �) = r

2

+ a

2


os

2

� : (7.116)

Here a measures the rotation of the hole and M is the mass. It is straightforward to in
lude

ele
tri
 and magneti
 
harges q and p, simply by repla
ing 2GMr with 2GMr� (q

2

+p

2

)=G;

the result is the Kerr-Newman metri
. All of the interesting phenomena persist in the

absen
e of 
harges, so we will set q = p = 0 from now on.

The 
oordinates (t; r; �; �) are known as Boyer-Lindquist 
oordinates. It is straight-

forward to 
he
k that as a! 0 they redu
e to S
hwarzs
hild 
oordinates. If we keep a �xed

and let M ! 0, however, we re
over 
at spa
etime but not in ordinary polar 
oordinates.

The metri
 be
omes

ds

2

= �dt

2

+

(r

2

+ a

2


os

2

�)

2

(r

2

+ a

2

)

dr

2

+ (r

2

+ a

2


os

2

�)

2

d�

2

+ (r

2

+ a

2

) sin

2

� d�

2

; (7.117)

and we re
ognize the spatial part of this as 
at spa
e in ellipsoidal 
oordinates.

They are related to Cartesian 
oordinates in Eu
lidean 3-spa
e by

x = (r

2

+ a

2

)

1=2

sin � 
os(�)

y = (r

2

+ a

2

)

1=2

sin � sin(�)

z = r 
os � : (7.118)

There are two Killing ve
tors of the metri
 (7.114), both of whi
h are manifest; sin
e the

metri
 
oeÆ
ients are independent of t and �, both �

�

= �

t

and �

�

= �

�

are Killing ve
tors.
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r = 

r = 0

= constθ 
const

a

Of 
ourse �

�

expresses the axial symmetry of the solution. The ve
tor �

�

is not orthogonal to

t = 
onstant hypersurfa
es, and in fa
t is not orthogonal to any hypersurfa
es at all; hen
e

this metri
 is stationary, but not stati
. (It's not 
hanging with time, but it is spinning.)

What is more, the Kerr metri
 also possesses something 
alled a Killing tensor. This

is any symmetri
 (0; n) tensor �

�

1

����

n

whi
h satis�es

r

(�

�

�

1

����

n

)

= 0 : (7.119)

Simple examples of Killing tensors are the metri
 itself, and symmetrized tensor produ
ts of

Killing ve
tors. Just as a Killing ve
tor implies a 
onstant of geodesi
 motion, if there exists

a Killing tensor then along a geodesi
 we will have

�

�

1

����

n

dx

�

1

d�

� � �

dx

�

n

d�

= 
onstant : (7.120)

(Unlike Killing ve
tors, higher-rank Killing tensors do not 
orrespond to symmetries of the

metri
.) In the Kerr geometry we 
an de�ne the (0; 2) tensor

�

��

= 2�

2

l

(�

n

�)

+ r

2

g

��

: (7.121)

In this expression the two ve
tors l and n are given (with indi
es raised) by

l

�

=

1

�

�

r

2

+ a

2

;�; 0; a

�

n

�

=

1

2�

2

�

r

2

+ a

2

;��; 0; a

�

: (7.122)

Both ve
tors are null and satisfy

l

�

l

�

= 0 ; n

�

n

�

= 0 ; l

�

n

�

= �1 : (7.123)
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(For what it is worth, they are the \spe
ial null ve
tors" of the Petrov 
lassi�
ation for this

spa
etime.) With these de�nitions, you 
an 
he
k for yourself that �

��

is a Killing tensor.

Let's think about the stru
ture of the full Kerr solution. Singularities seem to appear at

both � = 0 and � = 0; let's turn our attention �rst to � = 0. As in the Reissner-Nordstr�m

solution there are three possibilities: G

2

M

2

> a

2

, G

2

M

2

= a

2

, and G

2

M

2

< a

2

. The last


ase features a naked singularity, and the extremal 
ase G

2

M

2

= a

2

is unstable, just as in

Reissner-Nordstr�m. Sin
e these 
ases are of less physi
al interest, and time is short, we will


on
entrate on G

2

M

2

> a

2

. Then there are two radii at whi
h � vanishes, given by

r

�

= GM �

p

G

2

M

2

� a

2

: (7.124)

Both radii are null surfa
es whi
h will turn out to be event horizons. The analysis of these

surfa
es pro
eeds in 
lose analogy with the Reissner-Nordstr�m 
ase; it is straightforward to

�nd 
oordinates whi
h extend through the horizons.

Besides the event horizons at r

�

, the Kerr solution also features an additional surfa
e

of interest. Re
all that in the spheri
ally symmetri
 solutions, the \timelike" Killing ve
tor

�

�

= �

t

a
tually be
ame null on the (outer) event horizon, and spa
elike inside. Che
king

to see where the analogous thing happens for Kerr, we 
ompute

�

�

�

�

= �

1

�

2

(�� a

2

sin

2

�) : (7.125)

This does not vanish at the outer event horizon; in fa
t, at r = r

+

(where � = 0), we have

�

�

�

�

=

a

2

�

2

sin

2

� � 0 : (7.126)

So the Killing ve
tor is already spa
elike at the outer horizon, ex
ept at the north and south

poles (� = 0) where it is null. The lo
us of points where �

�

�

�

= 0 is known as the Killing

horizon, and is given by

(r �GM)

2

= G

2

M

2

� a

2


os

2

� ; (7.127)

while the outer event horizon is given by

(r

+

�GM)

2

= G

2

M

2

� a

2

: (7.128)

There is thus a region in between these two surfa
es, known as the ergosphere. Inside the

ergosphere, you must move in the dire
tion of the rotation of the bla
k hole (the � dire
tion);

however, you 
an still towards or away from the event horizon (and there is no trouble exiting

the ergosphere). It is evidently a pla
e where interesting things 
an happen even before you


ross the horizon; more details on this later.
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Before rushing to draw Penrose diagrams, we need to understand the nature of the true


urvature singularity; this does not o

ur at r = 0 in this spa
etime, but rather at � = 0.

Sin
e �

2

= r

2

+ a

2


os

2

� is the sum of two manifestly nonnegative quantities, it 
an only

vanish when both quantities are zero, or

r = 0 ; � =

�

2

: (7.129)

This seems like a funny result, but remember that r = 0 is not a point in spa
e, but a disk;

the set of points r = 0, � = �=2 is a
tually the ring at the edge of this disk. The rotation

has \softened" the S
hwarzs
hild singularity, spreading it out over a ring.

What happens if you go inside the ring? A 
areful analyti
 
ontinuation (whi
h we will

not perform) would reveal that you exit to another asymptoti
ally 
at spa
etime, but not an

identi
al 
opy of the one you 
ame from. The new spa
etime is des
ribed by the Kerr metri


with r < 0. As a result, � never vanishes and there are no horizons. The Penrose diagram

is mu
h like that for Reissner-Nordstr�m, ex
ept now you 
an pass through the singularity.

Not only do we have the usual strangeness of these distin
t asymptoti
ally 
at regions


onne
ted to ours through the bla
k hole, but the region near the ring singularity has addi-

tional pathologies: 
losed timelike 
urves. If you 
onsider traje
tories whi
h wind around in

� while keeping � and t 
onstant and r a small negative value, the line element along su
h

a path is

ds

2

= a

2

�

1 +

2GM

r

�

d�

2

; (7.130)

whi
h is negative for small negative r. Sin
e these paths are 
losed, they are obviously

CTC's. You 
an therefore meet yourself in the past, with all that entails.

Of 
ourse, everything we say about the analyti
 extension of Kerr is subje
t to the same


aveats we mentioned for S
hwarzs
hild and Reissner-Nordstr�m; it is unlikely that realisti


gravitational 
ollapse leads to these bizarre spa
etimes. It is nevertheless always useful to

have exa
t solutions. Furthermore, for the Kerr metri
 there are strange things happening

even if we stay outside the event horizon, to whi
h we now turn.
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We begin by 
onsidering more 
arefully the angular velo
ity of the hole. Obviously the


onventional de�nition of angular velo
ity will have to be modi�ed somewhat before we 
an

apply it to something as abstra
t as the metri
 of spa
etime. Let us 
onsider the fate of a

photon whi
h is emitted in the � dire
tion at some radius r in the equatorial plane (� = �=2)

of a Kerr bla
k hole. The instant it is emitted its momentum has no 
omponents in the r or

� dire
tion, and therefore the 
ondition that it be null is

ds

2

= 0 = g

tt

dt

2

+ g

t�

(dtd�+ d�dt) + g

��

d�

2

: (7.131)

This 
an be immediately solved to obtain

d�

dt

= �

g

t�

g

��

�

v

u

u

t

 

g

t�

g

��

!

2

�

g

tt

g

��

: (7.132)

If we evaluate this quantity on the Killing horizon of the Kerr metri
, we have g

tt

= 0, and

the two solutions are

d�

dt

= 0 ;

d�

dt

=

2a

(2GM)

2

+ a

2

: (7.133)

The nonzero solution has the same sign as a; we interpret this as the photon moving around

the hole in the same dire
tion as the hole's rotation. The zero solution means that the

photon dire
ted against the hole's rotation doesn't move at all in this 
oordinate system.

(This isn't a full solution to the photon's traje
tory, just the statement that its instantaneous

velo
ity is zero.) This is an example of the \dragging of inertial frames" mentioned earlier.

The point of this exer
ise is to note that massive parti
les, whi
h must move more slowly

than photons, are ne
essarily dragged along with the hole's rotation on
e they are inside the

Killing horizon. This dragging 
ontinues as we approa
h the outer event horizon at r

+

; we


an de�ne the angular velo
ity of the event horizon itself, 


H

, to be the minimum angular

velo
ity of a parti
le at the horizon. Dire
tly from (7.132) we �nd that




H

=

 

d�

dt

!

�

(r

+

) =

a

r

2

+

+ a

2

: (7.134)

Now let's turn to geodesi
 motion, whi
h we know will be simpli�ed by 
onsidering the


onserved quantities asso
iated with the Killing ve
tors �

�

= �

t

and �

�

= �

�

. For the

purposes at hand we 
an restri
t our attention to massive parti
les, for whi
h we 
an work

with the four-momentum

p

�

= m

dx

�

d�

; (7.135)

where m is the rest mass of the parti
le. Then we 
an take as our two 
onserved quantities

the a
tual energy and angular momentum of the parti
le,

E = ��

�

p

�

= m

 

1 �

2GMr

�

2

!

dt

d�

+

2mGMar

�

2

sin

2

�

d�

d�

(7.136)
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and

L = �

�

p

�

= �

2mGMar

�

2

sin

2

�

dt

d�

+

m(r

2

+ a

2

)

2

�m�a

2

sin

2

�

�

2

sin

2

�

d�

d�

: (7.137)

(These di�er from our previous de�nitions for the 
onserved quantities, where E and L were

taken to be the energy and angular momentum per unit mass. They are 
onserved either

way, of 
ourse.)

The minus sign in the de�nition of E is there be
ause at in�nity both �

�

and p

�

are

timelike, so their inner produ
t is negative, but we want the energy to be positive. Inside

the ergosphere, however, �

�

be
omes spa
elike; we 
an therefore imagine parti
les for whi
h

E = ��

�

p

�

< 0 : (7.138)

The extent to whi
h this bothers us is ameliorated somewhat by the realization that all

parti
les outside the Killing horizon must have positive energies; therefore a parti
le inside

the ergosphere with negative energy must either remain on a geodesi
 inside the Killing

horizon, or be a

elerated until its energy is positive if it is to es
ape.

Still, this realization leads to a way to extra
t energy from a rotating bla
k hole; the

method is known as the Penrose pro
ess. The idea is simple; starting from outside the

ergosphere, you arm yourself with a large ro
k and leap toward the bla
k hole. If we 
all the

four-momentum of the (you + ro
k) system p

(0)�

, then the energy E

(0)

= ��

�

p

(0)�

is 
ertainly

positive, and 
onserved as you move along your geodesi
. On
e you enter the ergosphere,

you hurl the ro
k with all your might, in a very spe
i�
 way. If we 
all your momentum

p

(1)�

and that of the ro
k p

(2)�

, then at the instant you throw it we have 
onservation of

momentum just as in spe
ial relativity:

p

(0)�

= p

(1)�

+ p

(2)�

: (7.139)

Contra
ting with the Killing ve
tor �

�

gives

E

(0)

= E

(1)

+ E

(2)

: (7.140)

But, if we imagine that you are arbitrarily strong (and a

urate), you 
an arrange your

throw su
h that E

(2)

< 0, as per (7.158). Furthermore, Penrose was able to show that you


an arrange the initial traje
tory and the throw su
h that afterwards you follow a geodesi


traje
tory ba
k outside the Killing horizon into the external universe. Sin
e your energy is


onserved along the way, at the end we will have

E

(1)

> E

(0)

: (7.141)

Thus, you have emerged with more energy than you entered with.
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There is no su
h thing as a free lun
h; the energy you gained 
ame from somewhere,

and that somewhere is the bla
k hole. In fa
t, the Penrose pro
ess extra
ts energy from the

rotating bla
k hole by de
reasing its angular momentum; you have to throw the ro
k against

the hole's rotation to get the tri
k to work. To see this more pre
isely, de�ne a new Killing

ve
tor

�

�

= �

�

+ 


H

�

�

: (7.142)

On the outer horizon �

�

is null and tangent to the horizon. (This 
an be seen from �

�

= �

t

,

�

�

= �

�

, and the de�nition (7.134) of 


H

.) The statement that the parti
le with momentum

p

(2)�


rosses the event horizon \moving forwards in time" is simply

p

(2)�

�

�

< 0 : (7.143)

Plugging in the de�nitions of E and L, we see that this 
ondition is equivalent to

L

(2)

<

E

(2)




H

: (7.144)

Sin
e we have arranged E

(2)

to be negative, and 


H

is positive, we see that the parti
le must

have a negative angular momentum | it is moving against the hole's rotation. On
e you

have es
aped the ergosphere and the ro
k has fallen inside the event horizon, the mass and

angular momentum of the hole are what they used to be plus the negative 
ontributions of

the ro
k:

ÆM = E

(2)

ÆJ = L

(2)

: (7.145)

Here we have introdu
ed the notation J for the angular momentum of the bla
k hole; it is

given by

J =Ma : (7.146)
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We won't justify this, but you 
an look in Wald for an explanation. Then (7.144) be
omes

a limit on how mu
h you 
an de
rease the angular momentum:

ÆJ <

ÆM




H

: (7.147)

If we exa
tly rea
h this limit, as the ro
k we throw in be
omes more and more null, we have

the \ideal" pro
ess, in whi
h ÆJ = ÆM=


H

.

We will now use these ideas to prove a powerful result: although you 
an use the Penrose

pro
ess to extra
t energy from the bla
k hole, you 
an never de
rease the area of the event

horizon. For a Kerr metri
, one 
an go through a straightforward 
omputation (proje
ting

the metri
 and volume element and so on) to 
ompute the area of the event horizon:

A = 4�(r

2

+

+ a

2

) : (7.148)

To show that this doesn't de
rease, it is most 
onvenient to work instead in terms of the

irredu
ible mass of the bla
k hole, de�ned by

M

2

irr

=

A

16�G

2

=

1

4G

2

(r

2

+

+ a

2

)

=

1

2

�

M

2

+

q

M

4

� (Ma=G)

2

�

=

1

2

�

M

2

+

q

M

4

� (J=G)

2

�

: (7.149)

We 
an di�erentiate to obtain, after a bit of work,

ÆM

irr

=

a

4G

p

G

2

M

2

� a

2

M

irr

(


�1

H

ÆM � ÆJ) : (7.150)

(I think I have the fa
tors of G right, but it wouldn't hurt to 
he
k.) Then our limit (7.147)

be
omes

ÆM

irr

> 0 : (7.151)

The irredu
ible mass 
an never be redu
ed; hen
e the name. It follows that the maximum

amount of energy we 
an extra
t from a bla
k hole before we slow its rotation to zero is

M �M

irr

=M �

1

p

2

�

M

2

+

q

M

4

� (J=G)

2

�

1=2

: (7.152)

The result of this 
omplete extra
tion is a S
hwarzs
hild bla
k hole of mass M

irr

. It turns

out that the best we 
an do is to start with an extreme Kerr bla
k hole; then we 
an get out

approximately 29% of its total energy.
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The irredu
ibility ofM

irr

leads immediately to the fa
t that the area A 
an never de
rease.

From (7.149) and (7.150) we have

ÆA = 8�G

a




H

p

G

2

M

2

� a

2

(ÆM � 


H

Æ

J

) ; (7.153)

whi
h 
an be re
ast as

ÆM =

�

8�G

ÆA+ 


H

ÆJ ; (7.154)

where we have introdu
ed

� =

p

G

2

M

2

� a

2

2GM(GM +

p

G

2

M

2

� a

2

)

: (7.155)

The quantity � is known as the surfa
e gravity of the bla
k hole.

It was equations like (7.154) that �rst started people thinking about the relationship

between bla
k holes and thermodynami
s. Consider the �rst law of thermodynami
s,

dU = TdS + work terms : (7.156)

It is natural to think of the term 


H

ÆJ as \work" that we do on the bla
k hole by throwing

ro
ks into it. Then the thermodynami
 analogy begins to take shape if we think of identifying

the area A as the entropy S, and the surfa
e gravity � as 8�G times the temperature

T . In fa
t, in the 
ontext of 
lassi
al general relativity the analogy is essentially perfe
t.

The \zeroth" law of thermodynami
s states that in thermal equilibrium the temperature is


onstant throughout the system; the analogous statement for bla
k holes is that stationary

bla
k holes have 
onstant surfa
e gravity on the entire horizon (true). As we have seen,

the �rst law (7.156) is equivalent to (7.154). The se
ond law, that entropy never de
reases,

is simply the statement that the area of the horizon never de
reases. Finally, the third

law is that it is impossible to a
hieve T = 0 in any physi
al pro
ess, whi
h should imply

that it is impossible to a
hieve � = 0 in any physi
al pro
ess. It turns out that � = 0


orresponds to the extremal bla
k holes (either in Kerr or Reissner-Nordstr�m) | where

the naked singularities would appear. Somehow, then, the third law is related to 
osmi



ensorship.

The missing pie
e is that real thermodynami
 bodies don't just sit there; they give o�

bla
kbody radiation with a spe
trum that depends on their temperature. Bla
k holes, it was

thought before Hawking dis
overed his radiation, don't do that, sin
e they're truly bla
k.

Histori
ally, Bekenstein 
ame up with the idea that bla
k holes should really be honest bla
k

bodies, in
luding the radiation at the appropriate temperature. This annoyed Hawking, who

set out to prove him wrong, and ended up proving that there would be radiation after all.

So the thermodynami
 analogy is even better than we had any right to expe
t | although

it is safe to say that nobody really knows why.
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8 Cosmology

Contemporary 
osmologi
al models are based on the idea that the universe is pretty mu
h

the same everywhere | a stan
e sometimes known as the Coperni
an prin
iple. On the

fa
e of it, su
h a 
laim seems preposterous; the 
enter of the sun, for example, bears little

resemblan
e to the desolate 
old of interstellar spa
e. But we take the Coperni
an prin
iple

to only apply on the very largest s
ales, where lo
al variations in density are averaged

over. Its validity on su
h s
ales is manifested in a number of di�erent observations, su
h

as number 
ounts of galaxies and observations of di�use X-ray and 
-ray ba
kgrounds, but

is most 
lear in the 3

Æ

mi
rowave ba
kground radiation. Although we now know that the

mi
rowave ba
kground is not perfe
tly smooth (and nobody ever expe
ted that it was), the

deviations from regularity are on the order of 10

�5

or less, 
ertainly an adequate basis for

an approximate des
ription of spa
etime on large s
ales.

The Coperni
an prin
iple is related to two more mathemati
ally pre
ise properties that

a manifold might have: isotropy and homogeneity. Isotropy applies at some spe
i�
 point

in the spa
e, and states that the spa
e looks the same no matter what dire
tion you look in.

More formally, a manifold M is isotropi
 around a point p if, for any two ve
tors V and W

in T

p

M , there is an isometry of M su
h that the pushforward of W under the isometry is

parallel with V (not pushed forward). It is isotropy whi
h is indi
ated by the observations

of the mi
rowave ba
kground.

Homogeneity is the statement that the metri
 is the same throughout the spa
e. In

other words, given any two points p and q in M , there is an isometry whi
h takes p into q.

Note that there is no ne
essary relationship between homogeneity and isotropy; a manifold


an be homogeneous but nowhere isotropi
 (su
h as R � S

2

in the usual metri
), or it 
an

be isotropi
 around a point without being homogeneous (su
h as a 
one, whi
h is isotropi


around its vertex but 
ertainly not homogeneous). On the other hand, if a spa
e is isotropi


everywhere then it is homogeneous. (Likewise if it is isotropi
 around one point and also

homogeneous, it will be isotropi
 around every point.) Sin
e there is ample observational

eviden
e for isotropy, and the Coperni
an prin
iple would have us believe that we are not

the 
enter of the universe and therefore observers elsewhere should also observe isotropy, we

will hen
eforth assume both homogeneity and isotropy.

There is one 
at
h. When we look at distant galaxies, they appear to be re
eding from us;

the universe is apparently not stati
, but 
hanging with time. Therefore we begin 
onstru
-

tion of 
osmologi
al models with the idea that the universe is homogeneous and isotropi
 in

spa
e, but not in time. In general relativity this translates into the statement that the uni-

verse 
an be foliated into spa
elike sli
es su
h that ea
h sli
e is homogeneous and isotropi
.

217
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We therefore 
onsider our spa
etime to be R � �, where R represents the time dire
tion

and � is a homogeneous and isotropi
 three-manifold. The usefulness of homogeneity and

isotropy is that they imply that � must be a maximally symmetri
 spa
e. (Think of isotropy

as invarian
e under rotations, and homogeneity as invarian
e under translations. Then ho-

mogeneity and isotropy together imply that a spa
e has its maximum possible number of

Killing ve
tors.) Therefore we 
an take our metri
 to be of the form

ds

2

= �dt

2

+ a

2

(t)


ij

(u)du

i

du

j

: (8.1)

Here t is the timelike 
oordinate, and (u

1

; u

2

; u

3

) are the 
oordinates on �; 


ij

is the max-

imally symmetri
 metri
 on �. This formula is a spe
ial 
ase of (7.2), whi
h we used to

derive the S
hwarzs
hild metri
, ex
ept we have s
aled t su
h that g

tt

= �1. The fun
tion

a(t) is known as the s
ale fa
tor, and it tells us \how big" the spa
elike sli
e � is at the

moment t. The 
oordinates used here, in whi
h the metri
 is free of 
ross terms dtdu

i

and

the spa
elike 
omponents are proportional to a single fun
tion of t, are known as 
omoving


oordinates, and an observer who stays at 
onstant u

i

is also 
alled \
omoving". Only

a 
omoving observer will think that the universe looks isotropi
; in fa
t on Earth we are

not quite 
omoving, and as a result we see a dipole anisotropy in the 
osmi
 mi
rowave

ba
kground as a result of the 
onventional Doppler e�e
t.

Our interest is therefore in maximally symmetri
 Eu
lidean three-metri
s 


ij

. We know

that maximally symmetri
 metri
s obey

(3)

R

ijkl

= k(


ik




jl

� 


il




jk

) ; (8.2)

where k is some 
onstant, and we put a supers
ript

(3)

on the Riemann tensor to remind us

that it is asso
iated with the three-metri
 


ij

, not the metri
 of the entire spa
etime. The

Ri

i tensor is then

(3)

R

jl

= 2k


jl

: (8.3)

If the spa
e is to be maximally symmetri
, then it will 
ertainly be spheri
ally symmetri
.

We already know something about spheri
ally symmetri
 spa
es from our exploration of the

S
hwarzs
hild solution; the metri
 
an be put in the form

d�

2

= 


ij

du

i

du

j

= e

2�(r)

dr

2

+ r

2

(d�

2

+ sin

2

� d�

2

) : (8.4)

The 
omponents of the Ri

i tensor for su
h a metri
 
an be obtained from (7.16), the Ri

i

tensor for a spheri
ally symmetri
 spa
etime, by setting � = 0 and �

0

� = 0, whi
h gives

(3)

R

11

=

2

r

�

1

�

(3)

R

22

= e

�2�

(r�

1

� � 1) + 1

(3)

R

33

= [e

�2�

(r�

1

� � 1) + 1℄ sin

2

� : (8.5)
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We set these proportional to the metri
 using (8.3), and 
an solve for �(r):

� = �

1

2

ln(1 � kr

2

) : (8.6)

This gives us the following metri
 on spa
etime:

ds

2

= �dt

2

+ a

2

(t)

"

dr

2

1 � kr

2

+ r

2

(d�

2

+ sin

2

� d�

2

)

#

: (8.7)

This is the Robertson-Walker metri
. We have not yet made use of Einstein's equations;

those will determine the behavior of the s
ale fa
tor a(t).

Note that the substitutions

k !

k

jkj

r !

q

jkj r

a !

a

p

jkj

(8.8)

leave (8.7) invariant. Therefore the only relevant parameter is k=jkj, and there are three


ases of interest: k = �1, k = 0, and k = +1. The k = �1 
ase 
orresponds to 
onstant

negative 
urvature on �, and is 
alled open; the k = 0 
ase 
orresponds to no 
urvature on

�, and is 
alled 
at; the k = +1 
ase 
orresponds to positive 
urvature on �, and is 
alled


losed.

Let us examine ea
h of these possibilities. For the 
at 
ase k = 0 the metri
 on � is

d�

2

= dr

2

+ r

2

d


2

= dx

2

+ dy

2

+ dz

2

; (8.9)

whi
h is simply 
at Eu
lidean spa
e. Globally, it 
ould des
ribe R

3

or a more 
ompli
ated

manifold, su
h as the three-torus S

1

� S

1

� S

1

. For the 
losed 
ase k = +1 we 
an de�ne

r = sin� to write the metri
 on � as

d�

2

= d�

2

+ sin

2

�d


2

; (8.10)

whi
h is the metri
 of a three-sphere. In this 
ase the only possible global stru
ture is

a
tually the three-sphere (ex
ept for the non-orientable manifold RP

3

). Finally in the open

k = �1 
ase we 
an set r = sinh to obtain

d�

2

= d 

2

+ sinh

2

 d


2

: (8.11)

This is the metri
 for a three-dimensional spa
e of 
onstant negative 
urvature; it is hard

to visualize, but think of the saddle example we spoke of in Se
tion Three. Globally su
h

a spa
e 
ould extend forever (whi
h is the origin of the word \open"), but it 
ould also
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des
ribe a non-simply-
onne
ted 
ompa
t spa
e (so \open" is really not the most a

urate

des
ription).

With the metri
 in hand, we 
an set about 
omputing the 
onne
tion 
oeÆ
ients and


urvature tensor. Setting _a � da=dt, the Christo�el symbols are given by

�

0

11

=

a _a

1 � kr

2

�

0

22

= a _ar

2

�

0

33

= a _ar

2

sin

2

�

�

1

01

= �

1

10

= �

2

02

= �

2

20

= �

3

03

= �

3

30

=

_a

a

�

1

22

= �r(1 � kr

2

) �

1

33

= �r(1� kr

2

) sin

2

�

�

2

12

= �

2

21

= �

3

13

= �

3

31

=

1

r

�

2

33

= � sin � 
os � �

3

23

= �

3

32

= 
ot � : (8.12)

The nonzero 
omponents of the Ri

i tensor are

R

00

= �3

�a

a

R

11

=

a�a+ 2_a

2

+ 2k

1 � kr

2

R

22

= r

2

(a�a+ 2_a

2

+ 2k)

R

33

= r

2

(a�a+ 2_a

2

+ 2k) sin

2

� ; (8.13)

and the Ri

i s
alar is then

R =

6

a

2

(a�a+ _a

2

+ k) : (8.14)

The universe is not empty, so we are not interested in va
uum solutions to Einstein's

equations. We will 
hoose to model the matter and energy in the universe by a perfe
t


uid. We dis
ussed perfe
t 
uids in Se
tion One, where they were de�ned as 
uids whi
h

are isotropi
 in their rest frame. The energy-momentum tensor for a perfe
t 
uid 
an be

written

T

��

= (p+ �)U

�

U

�

+ pg

��

; (8.15)

where � and p are the energy density and pressure (respe
tively) as measured in the rest

frame, and U

�

is the four-velo
ity of the 
uid. It is 
lear that, if a 
uid whi
h is isotropi
 in

some frame leads to a metri
 whi
h is isotropi
 in some frame, the two frames will 
oin
ide;

that is, the 
uid will be at rest in 
omoving 
oordinates. The four-velo
ity is then

U

�

= (1; 0; 0; 0) ; (8.16)

and the energy-momentum tensor is

T

��

=

0

B

B

B

�

� 0 0 0

0

0 g

ij

p

0

1

C

C

C

A

: (8.17)
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With one index raised this takes the more 
onvenient form

T

�

�

= diag(��; p; p; p) : (8.18)

Note that the tra
e is given by

T = T

�

�

= ��+ 3p : (8.19)

Before plugging in to Einstein's equations, it is edu
ational to 
onsider the zero 
ompo-

nent of the 
onservation of energy equation:

0 = r

�

T

�

0

= �

�

T

�

0

+ �

�

�0

T

0

0

� �

�

�0

T

�

�

= ��

0

�� 3

_a

a

(�+ p) : (8.20)

To make progress it is ne
essary to 
hoose an equation of state, a relationship between �

and p. Essentially all of the perfe
t 
uids relevant to 
osmology obey the simple equation of

state

p = w� ; (8.21)

where w is a 
onstant independent of time. The 
onservation of energy equation be
omes

_�

�

= �3(1 + w)

_a

a

; (8.22)

whi
h 
an be integrated to obtain

� / a

�3(1+w)

: (8.23)

The two most popular examples of 
osmologi
al 
uids are known as dust and radiation.

Dust is 
ollisionless, nonrelativisti
 matter, whi
h obeys w = 0. Examples in
lude ordinary

stars and galaxies, for whi
h the pressure is negligible in 
omparison with the energy density.

Dust is also known as \matter", and universes whose energy density is mostly due to dust

are known as matter-dominated. The energy density in matter falls o� as

� / a

�3

: (8.24)

This is simply interpreted as the de
rease in the number density of parti
les as the universe

expands. (For dust the energy density is dominated by the rest energy, whi
h is proportional

to the number density.) \Radiation" may be used to des
ribe either a
tual ele
tromagneti


radiation, or massive parti
les moving at relative velo
ities suÆ
iently 
lose to the speed of

light that they be
ome indistinguishable from photons (at least as far as their equation of

state is 
on
erned). Although radiation is a perfe
t 
uid and thus has an energy-momentum
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tensor given by (8.15), we also know that T

��


an be expressed in terms of the �eld strength

as

T

��

=

1

4�

(F

��

F

�

�

�

1

4

g

��

F

��

F

��

) : (8.25)

The tra
e of this is given by

T

�

�

=

1

4�

�

F

��

F

��

�

1

4

(4)F

��

F

��

�

= 0 : (8.26)

But this must also equal (8.19), so the equation of state is

p =

1

3

� : (8.27)

A universe in whi
h most of the energy density is in the form of radiation is known as

radiation-dominated. The energy density in radiation falls o� as

� / a

�4

: (8.28)

Thus, the energy density in radiation falls o� slightly faster than that in matter; this is

be
ause the number density of photons de
reases in the same way as the number density of

nonrelativisti
 parti
les, but individual photons also lose energy as a

�1

as they redshift, as

we will see later. (Likewise, massive but relativisti
 parti
les will lose energy as they \slow

down" in 
omoving 
oordinates.) We believe that today the energy density of the universe

is dominated by matter, with �

mat

=�

rad

� 10

6

. However, in the past the universe was mu
h

smaller, and the energy density in radiation would have dominated at very early times.

There is one other form of energy-momentum that is sometimes 
onsidered, namely that

of the va
uum itself. Introdu
ing energy into the va
uum is equivalent to introdu
ing a


osmologi
al 
onstant. Einstein's equations with a 
osmologi
al 
onstant are

G

��

= 8�GT

��

� �g

��

; (8.29)

whi
h is 
learly the same form as the equations with no 
osmologi
al 
onstant but an energy-

momentum tensor for the va
uum,

T

(va
)

��

= �

�

8�G

g

��

: (8.30)

This has the form of a perfe
t 
uid with

� = �p =

�

8�G

: (8.31)

We therefore have w = �1, and the energy density is independent of a, whi
h is what we

would expe
t for the energy density of the va
uum. Sin
e the energy density in matter and
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radiation de
reases as the universe expands, if there is a nonzero va
uum energy it tends

to win out over the long term (as long as the universe doesn't start 
ontra
ting). If this

happens, we say that the universe be
omes va
uum-dominated.

We now turn to Einstein's equations. Re
all that they 
an be written in the form (4.45):

R

��

= 8�G

�

T

��

�

1

2

g

��

T

�

: (8.32)

The �� = 00 equation is

� 3

�a

a

= 4�G(� + 3p) ; (8.33)

and the �� = ij equations give

�a

a

+ 2

�

_a

a

�

2

+ 2

k

a

2

= 4�G(�� p) : (8.34)

(There is only one distin
t equation from �� = ij, due to isotropy.) We 
an use (8.33) to

eliminate se
ond derivatives in (8.34), and do a little 
leaning up to obtain

�a

a

= �

4�G

3

(�+ 3p) ; (8.35)

and

�

_a

a

�

2

=

8�G

3

��

k

a

2

: (8.36)

Together these are known as the Friedmann equations, and metri
s of the form (8.7)

whi
h obey these equations de�ne Friedmann-Robertson-Walker (FRW) universes.

There is a bun
h of terminology whi
h is asso
iated with the 
osmologi
al parameters,

and we will just introdu
e the basi
s here. The rate of expansion is 
hara
terized by the

Hubble parameter,

H =

_a

a

: (8.37)

The value of the Hubble parameter at the present epo
h is the Hubble 
onstant, H

0

. There

is 
urrently a great deal of 
ontroversy about what its a
tual value is, with measurements

falling in the range of 40 to 90 km/se
/Mp
. (\Mp
" stands for \megaparse
", whi
h is

3 � 10

24


m.) Note that we have to divide _a by a to get a measurable quantity, sin
e the

overall s
ale of a is irrelevant. There is also the de
eleration parameter,

q = �

a�a

_a

2

; (8.38)

whi
h measures the rate of 
hange of the rate of expansion.

Another useful quantity is the density parameter,


 =

8�G

3H

2

�
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=

�

�


rit

; (8.39)

where the 
riti
al density is de�ned by

�


rit

=

3H

2

8�G

: (8.40)

This quantity (whi
h will generally 
hange with time) is 
alled the \
riti
al" density be
ause

the Friedmann equation (8.36) 
an be written


 � 1 =

k

H

2

a

2

: (8.41)

The sign of k is therefore determined by whether 
 is greater than, equal to, or less than

one. We have

� < �


rit

$ 
 < 1 $ k = �1 $ open

� = �


rit

$ 
 = 1 $ k = 0 $ 
at

� > �


rit

$ 
 > 1 $ k = +1 $ 
losed :

The density parameter, then, tells us whi
h of the three Robertson-Walker geometries de-

s
ribes our universe. Determining it observationally is an area of intense investigation.

It is possible to solve the Friedmann equations exa
tly in various simple 
ases, but it

is often more useful to know the qualitative behavior of various possibilities. Let us for

the moment set � = 0, and 
onsider the behavior of universes �lled with 
uids of positive

energy (� > 0) and nonnegative pressure (p � 0). Then by (8.35) we must have �a < 0.

Sin
e we know from observations of distant galaxies that the universe is expanding ( _a > 0),

this means that the universe is \de
elerating." This is what we should expe
t, sin
e the

gravitational attra
tion of the matter in the universe works against the expansion. The fa
t

that the universe 
an only de
elerate means that it must have been expanding even faster

in the past; if we tra
e the evolution ba
kwards in time, we ne
essarily rea
h a singularity

at a = 0. Noti
e that if �a were exa
tly zero, a(t) would be a straight line, and the age of

the universe would be H

�1

0

. Sin
e �a is a
tually negative, the universe must be somewhat

younger than that.

This singularity at a = 0 is the Big Bang. It represents the 
reation of the universe

from a singular state, not explosion of matter into a pre-existing spa
etime. It might be

hoped that the perfe
t symmetry of our FRW universes was responsible for this singularity,

but in fa
t it's not true; the singularity theorems predi
t that any universe with � > 0 and

p � 0 must have begun at a singularity. Of 
ourse the energy density be
omes arbitrarily

high as a! 0, and we don't expe
t 
lassi
al general relativity to be an a

urate des
ription

of nature in this regime; hopefully a 
onsistent theory of quantum gravity will be able to �x

things up.
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now

Big
Bang

a(t)

t

-1H
0

The future evolution is di�erent for di�erent values of k. For the open and 
at 
ases,

k � 0, (8.36) implies

_a

2

=

8�G

3

�a

2

+ jkj : (8.42)

The right hand side is stri
tly positive (sin
e we are assuming � > 0), so _a never passes

through zero. Sin
e we know that today _a > 0, it must be positive for all time. Thus,

the open and 
at universes expand forever | they are temporally as well as spatially open.

(Please keep in mind what assumptions go into this | namely, that there is a nonzero

positive energy density. Negative energy density universes do not have to expand forever,

even if they are \open".)

How fast do these universes keep expanding? Consider the quantity �a

3

(whi
h is 
onstant

in matter-dominated universes). By the 
onservation of energy equation (8.20) we have

d

dt

(�a

3

) = a

3

�

_�+ 3�

_a

a

�

= �3pa

2

_a : (8.43)

The right hand side is either zero or negative; therefore

d

dt

(�a

3

) � 0 : (8.44)

This implies in turn that �a

2

must go to zero in an ever-expanding universe, where a!1.

Thus (8.42) tells us that

_a

2

! jkj : (8.45)

(Remember that this is true for k � 0.) Thus, for k = �1 the expansion approa
hes the

limiting value _a ! 1, while for k = 0 the universe keeps expanding, but more and more

slowly.
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For the 
losed universes (k = +1), (8.36) be
omes

_a

2

=

8�G

3

�a

2

� 1 : (8.46)

The argument that �a

2

! 0 as a ! 1 still applies; but in that 
ase (8.46) would be-


ome negative, whi
h 
an't happen. Therefore the universe does not expand inde�nitely; a

possesses an upper bound a

max

. As a approa
hes a

max

, (8.35) implies

�a!�

4�G

3

(� + 3p)a

max

< 0 : (8.47)

Thus �a is �nite and negative at this point, so a rea
hes a

max

and starts de
reasing, whereupon

(sin
e �a < 0) it will inevitably 
ontinue to 
ontra
t to zero | the Big Crun
h. Thus, the


losed universes (again, under our assumptions of positive � and nonnegative p) are 
losed

in time as well as spa
e.

a(t)

t

nowbang crunch

k = 0

k = -1

k = +1

We will now list some of the exa
t solutions 
orresponding to only one type of energy

density. For dust-only universes (p = 0), it is 
onvenient to de�ne a development angle

�(t), rather than using t as a parameter dire
tly. The solutions are then, for open universes,

(

a =

C

2

(
osh�� 1)

t =

C

2

(sinh�� �)

(k = �1) ; (8.48)

for 
at universes,

a =

�

9C

4

�

1=3

t

2=3

(k = 0) ; (8.49)

and for 
losed universes,

(

a =

C

2

(1� 
os�)

t =

C

2

(�� sin �)

(k = +1) ; (8.50)
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where we have de�ned

C =

8�G

3

�a

3

= 
onstant : (8.51)

For universes �lled with nothing but radiation, p =

1

3

�, we have on
e again open universes,

a =

p

C

0

2

4

 

1 +

t

p

C

0

!

2

� 1

3

5

1=2

(k = �1) ; (8.52)


at universes,

a = (4C

0

)

1=4

t

1=2

(k = 0) ; (8.53)

and 
losed universes,

a =

p

C

0

2

4

1�

 

1�

t

p

C

0

!

2

3

5

1=2

(k = +1) ; (8.54)

where this time we de�ned

C

0

=

8�G

3

�a

4

= 
onstant : (8.55)

You 
an 
he
k for yourselves that these exa
t solutions have the properties we argued would

hold in general.

For universes whi
h are empty save for the 
osmologi
al 
onstant, either � or p will be

negative, in violation of the assumptions we used earlier to derive the general behavior of

a(t). In this 
ase the 
onne
tion between open/
losed and expands forever/re
ollapses is

lost. We begin by 
onsidering � < 0. In this 
ase 
 is negative, and from (8.41) this 
an

only happen if k = �1. The solution in this 
ase is

a =

s

�3

�

sin

0

�

s

��

3

t

1

A

: (8.56)

There is also an open (k = �1) solution for � > 0, given by

a =

s

3

�

sinh

0

�

s

�

3

t

1

A

: (8.57)

A 
at va
uum-dominated universe must have � > 0, and the solution is

a / exp

0

�

�

s

�

3

t

1

A

; (8.58)

while the 
losed universe must also have � > 0, and satis�es

a =

s

3

�


osh

0

�

s

�

3

t

1

A

: (8.59)
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These solutions are a little misleading. In fa
t the three solutions for � > 0 | (8.57), (8.58),

and (8.59) | all represent the same spa
etime, just in di�erent 
oordinates. This spa
etime,

known as de Sitter spa
e, is a
tually maximally symmetri
 as a spa
etime. (See Hawking

and Ellis for details.) The � < 0 solution (8.56) is also maximally symmetri
, and is known

as anti-de Sitter spa
e.

It is 
lear that we would like to observationally determine a number of quantities to de
ide

whi
h of the FRWmodels 
orresponds to our universe. Obviously we would like to determine

H

0

, sin
e that is related to the age of the universe. (For a purely matter-dominated, k = 0

universe, (8.49) implies that the age is 2=(3H

0

). Other possibilities would predi
t similar

relations.) We would also like to know 
, whi
h determines k through (8.41). Given the

de�nition (8.39) of 
, this means we want to know both H

0

and �

0

. Unfortunately both

quantities are hard to measure a

urately, espe
ially �. But noti
e that the de
eleration

parameter q 
an be related to 
 using (8.35):

q = �

a�a

_a

2

= �H

�2

�a

a

=

4�G

3H

2

(�+ 3p)

=

4�G

3H

2

�(1 + 3w)

=

1 + 3w

2


 : (8.60)

Therefore, if we think we know what w is (i.e., what kind of stu� the universe is made of),

we 
an determine 
 by measuring q. (Unfortunately we are not 
ompletely 
on�dent that

we know w, and q is itself hard to measure. But people are trying.)

To understand how these quantities might 
on
eivably be measured, let's 
onsider geo-

desi
 motion in an FRW universe. There are a number of spa
elike Killing ve
tors, but no

timelike Killing ve
tor to give us a notion of 
onserved energy. There is, however, a Killing

tensor. If U

�

= (1; 0; 0; 0) is the four-velo
ity of 
omoving observers, then the tensor

K

��

= a

2

(g

��

+ U

�

U

�

) (8.61)

satis�es r

(�

K

��)

= 0 (as you 
an 
he
k), and is therefore a Killing tensor. This means that

if a parti
le has four-velo
ity V

�

= dx

�

=d�, the quantity

K

2

= K

��

V

�

V

�

= a

2

[V

�

V

�

+ (U

�

V

�

)

2

℄ (8.62)

will be a 
onstant along geodesi
s. Let's think about this, �rst for massive parti
les. Then

we will have V

�

V

�

= �1, or

(V

0

)

2

= 1 + j

~

V j

2

; (8.63)
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where j

~

V j

2

= g

ij

V

i

V

j

. So (8.61) implies

j

~

V j =

K

a

: (8.64)

The parti
le therefore \slows down" with respe
t to the 
omoving 
oordinates as the universe

expands. In fa
t this is an a
tual slowing down, in the sense that a gas of parti
les with

initially high relative velo
ities will 
ool down as the universe expands.

A similar thing happens to null geodesi
s. In this 
ase V

�

V

�

= 0, and (8.62) implies

U

�

V

�

=

K

a

: (8.65)

But the frequen
y of the photon as measured by a 
omoving observer is ! = �U

�

V

�

. The

frequen
y of the photon emitted with frequen
y !

1

will therefore be observed with a lower

frequen
y !

0

as the universe expands:

!

0

!

1

=

a

1

a

0

: (8.66)

Cosmologists like to speak of this in terms of the redshift z between the two events, de�ned

by the fra
tional 
hange in wavelength:

z =

�

0

� �

1

�

1

=

a

0

a

1

� 1 : (8.67)

Noti
e that this redshift is not the same as the 
onventional Doppler e�e
t; it is the expansion

of spa
e, not the relative velo
ities of the observer and emitter, whi
h leads to the redshift.

The redshift is something we 
an measure; we know the rest-frame wavelengths of various

spe
tral lines in the radiation from distant galaxies, so we 
an tell how mu
h their wavelengths

have 
hanged along the path from time t

1

when they were emitted to time t

0

when they were

observed. We therefore know the ratio of the s
ale fa
tors at these two times. But we don't

know the times themselves; the photons are not 
lever enough to tell us how mu
h 
oordinate

time has elapsed on their journey. We have to work harder to extra
t this information.

Roughly speaking, sin
e a photon moves at the speed of light its travel time should simply

be its distan
e. But what is the \distan
e" of a far away galaxy in an expanding universe?

The 
omoving distan
e is not espe
ially useful, sin
e it is not measurable, and furthermore

be
ause the galaxies need not be 
omoving in general. Instead we 
an de�ne the luminosity

distan
e as

d

2

L

=

L

4�F

; (8.68)

where L is the absolute luminosity of the sour
e and F is the 
ux measured by the observer

(the energy per unit time per unit area of some dete
tor). The de�nition 
omes from the
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fa
t that in 
at spa
e, for a sour
e at distan
e d the 
ux over the luminosity is just one

over the area of a sphere 
entered around the sour
e, F=L = 1=A(d) = 1=4�d

2

. In an FRW

universe, however, the 
ux will be diluted. Conservation of photons tells us that the total

number of photons emitted by the sour
e will eventually pass through a sphere at 
omoving

distan
e r from the emitter. Su
h a sphere is at a physi
al distan
e d = a

0

r, where a

0

is

the s
ale fa
tor when the photons are observed. But the 
ux is diluted by two additional

e�e
ts: the individual photons redshift by a fa
tor (1 + z), and the photons hit the sphere

less frequently, sin
e two photons emitted a time Æt apart will be measured at a time (1+z)Æt

apart. Therefore we will have

F

L

=

1

4�a

2

0

r

2

(1 + z)

2

; (8.69)

or

d

L

= a

0

r(1 + z) : (8.70)

The luminosity distan
e d

L

is something we might hope to measure, sin
e there are some

astrophysi
al sour
es whose absolute luminosities are known (\standard 
andles"). But r is

not observable, so we have to remove that from our equation. On a null geodesi
 (
hosen to

be radial for 
onvenien
e) we have

0 = ds

2

= �dt

2

+

a

2

1� kr

2

dr

2

; (8.71)

or

Z

t

0

t

1

dt

a(t)

=

Z

r

0

dr

(1� kr

2

)

1=2

: (8.72)

For galaxies not too far away, we 
an expand the s
ale fa
tor in a Taylor series about its

present value:

a(t

1

) = a

0

+ (_a)

0

(t

1

� t

0

) +

1

2

(�a)

0

(t

1

� t

0

)

2

+ : : : : (8.73)

We 
an then expand both sides of (8.72) to �nd

r = a

�1

0

�

(t

0

� t

1

) +

1

2

H

0

(t

0

� t

1

)

2

+ : : :

�

: (8.74)

Now remembering (8.67), the expansion (8.73) is the same as

1

1 + z

= 1 +H

0

(t

1

� t

0

)�

1

2

q

0

H

2

0

(t

1

� t

0

)

2

+ : : : : (8.75)

For small H

0

(t

1

� t

0

) this 
an be inverted to yield

t

0

� t

1

= H

�1

0

�

z �

�

1 +

q

0

2

�

z

2

+ : : :

�

: (8.76)
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Substituting this ba
k again into (8.74) gives

r =

1

a

0

H

0

�

z �

1

2

(1 + q

0

) z

2

+ : : :

�

: (8.77)

Finally, using this in (8.70) yields Hubble's Law:

d

L

= H

�1

0

�

z +

1

2

(1� q

0

)z

2

+ : : :

�

: (8.78)

Therefore, measurement of the luminosity distan
es and redshifts of a suÆ
ient number of

galaxies allows us to determine H

0

and q

0

, and therefore takes us a long way to de
iding

what kind of FRW universe we live in. The observations themselves are extremely diÆ
ult,

and the values of these parameters in the real world are still hotly 
ontested. Over the next

de
ade or so a variety of new strategies and more pre
ise appli
ation of old strategies 
ould

very well answer these questions on
e and for all.


